openvino-ci commited on
Commit
13b9042
·
verified ·
1 Parent(s): 8992950

Upload folder using huggingface_hub

Browse files
feature_extractor/preprocessor_config.json CHANGED
@@ -1,21 +1,4 @@
1
  {
2
- "_valid_processor_keys": [
3
- "images",
4
- "do_resize",
5
- "size",
6
- "resample",
7
- "do_center_crop",
8
- "crop_size",
9
- "do_rescale",
10
- "rescale_factor",
11
- "do_normalize",
12
- "image_mean",
13
- "image_std",
14
- "do_convert_rgb",
15
- "return_tensors",
16
- "data_format",
17
- "input_data_format"
18
- ],
19
  "crop_size": {
20
  "height": 224,
21
  "width": 224
 
1
  {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  "crop_size": {
3
  "height": 224,
4
  "width": 224
model_index.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "_class_name": "StableDiffusionPipeline",
3
- "_diffusers_version": "0.27.2",
4
- "_name_or_path": "OpenVINO/LCM_Dreamshaper_v7-fp16-ov",
5
  "feature_extractor": [
6
  "transformers",
7
  "CLIPImageProcessor"
@@ -35,4 +35,4 @@
35
  "diffusers",
36
  "AutoencoderKL"
37
  ]
38
- }
 
1
  {
2
+ "_class_name": "LatentConsistencyModelPipeline",
3
+ "_diffusers_version": "0.31.0",
4
+ "_name_or_path": "OpenVINO/LCM_DreamShaper_v7-fp16-ov",
5
  "feature_extractor": [
6
  "transformers",
7
  "CLIPImageProcessor"
 
35
  "diffusers",
36
  "AutoencoderKL"
37
  ]
38
+ }
scheduler/scheduler_config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "_class_name": "LCMScheduler",
3
- "_diffusers_version": "0.27.2",
4
  "beta_end": 0.012,
5
  "beta_schedule": "scaled_linear",
6
  "beta_start": 0.00085,
 
1
  {
2
  "_class_name": "LCMScheduler",
3
+ "_diffusers_version": "0.31.0",
4
  "beta_end": 0.012,
5
  "beta_schedule": "scaled_linear",
6
  "beta_start": 0.00085,
text_encoder/config.json CHANGED
@@ -1,5 +1,6 @@
1
  {
2
- "_name_or_path": "/nfs/ov-share-05/data/cv_bench_cache/DL_benchmarking_models/lcm-dreamshaper-v7/pytorch/text_encoder",
 
3
  "architectures": [
4
  "CLIPTextModel"
5
  ],
@@ -20,6 +21,6 @@
20
  "pad_token_id": 1,
21
  "projection_dim": 768,
22
  "torch_dtype": "float32",
23
- "transformers_version": "4.40.1",
24
  "vocab_size": 49408
25
- }
 
1
  {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "OpenVINO/LCM_DreamShaper_v7-fp16-ov",
4
  "architectures": [
5
  "CLIPTextModel"
6
  ],
 
21
  "pad_token_id": 1,
22
  "projection_dim": 768,
23
  "torch_dtype": "float32",
24
+ "transformers_version": "4.46.2",
25
  "vocab_size": 49408
26
+ }
text_encoder/openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dedc00ba0ad1086da370396a3e38a24ec5cd4a0d931fbc5de7d4ba0201b724ed
3
- size 246121704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eddab6dcd97379c0f6528ae53c381d5e7d07b56f20bc0b334ed8ed251d77b9fb
3
+ size 246121754
text_encoder/openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer/openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4881bedb5628bac0d292f031cfa4d99bf9260353b85d0d8b284c28cdd38d8b29
3
+ size 616767
tokenizer/openvino_detokenizer.xml ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_104317" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_104317">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_104343" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_104281" type="Const" version="opset1">
29
+ <data element_type="u8" shape="616710" offset="0" size="616710" />
30
+ <output>
31
+ <port id="0" precision="U8">
32
+ <dim>616710</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="StringTensorUnpack_104282" type="StringTensorUnpack" version="extension">
37
+ <data mode="begins_ends" />
38
+ <input>
39
+ <port id="0" precision="U8">
40
+ <dim>616710</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I32">
45
+ <dim>-1</dim>
46
+ </port>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="U8">
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="VocabDecoder_104318" type="VocabDecoder" version="extension">
56
+ <data skip_tokens="49406, 49407" />
57
+ <input>
58
+ <port id="0" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ <port id="1" precision="I32">
63
+ <dim>-1</dim>
64
+ </port>
65
+ <port id="2" precision="I32">
66
+ <dim>-1</dim>
67
+ </port>
68
+ <port id="3" precision="U8">
69
+ <dim>-1</dim>
70
+ </port>
71
+ </input>
72
+ <output>
73
+ <port id="4" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>-1</dim>
78
+ </port>
79
+ <port id="6" precision="I32">
80
+ <dim>-1</dim>
81
+ </port>
82
+ <port id="7" precision="I32">
83
+ <dim>-1</dim>
84
+ </port>
85
+ <port id="8" precision="U8">
86
+ <dim>-1</dim>
87
+ </port>
88
+ </output>
89
+ </layer>
90
+ <layer id="5" name="FuzeRagged_104319" type="FuzeRagged" version="extension">
91
+ <input>
92
+ <port id="0" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ <port id="1" precision="I32">
96
+ <dim>-1</dim>
97
+ </port>
98
+ <port id="2" precision="I32">
99
+ <dim>-1</dim>
100
+ </port>
101
+ <port id="3" precision="I32">
102
+ <dim>-1</dim>
103
+ </port>
104
+ </input>
105
+ <output>
106
+ <port id="4" precision="I32">
107
+ <dim>-1</dim>
108
+ </port>
109
+ <port id="5" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="6" name="Constant_104321" type="Const" version="opset1">
115
+ <data element_type="u8" shape="4" offset="616710" size="4" />
116
+ <output>
117
+ <port id="0" precision="U8">
118
+ <dim>4</dim>
119
+ </port>
120
+ </output>
121
+ </layer>
122
+ <layer id="7" name="Constant_104323" type="Const" version="opset1">
123
+ <data element_type="u8" shape="1" offset="616714" size="1" />
124
+ <output>
125
+ <port id="0" precision="U8">
126
+ <dim>1</dim>
127
+ </port>
128
+ </output>
129
+ </layer>
130
+ <layer id="8" name="RegexNormalization_104324" type="RegexNormalization" version="extension">
131
+ <data global_replace="true" />
132
+ <input>
133
+ <port id="0" precision="I32">
134
+ <dim>-1</dim>
135
+ </port>
136
+ <port id="1" precision="I32">
137
+ <dim>-1</dim>
138
+ </port>
139
+ <port id="2" precision="U8">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="3" precision="U8">
143
+ <dim>4</dim>
144
+ </port>
145
+ <port id="4" precision="U8">
146
+ <dim>1</dim>
147
+ </port>
148
+ </input>
149
+ <output>
150
+ <port id="5" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ <port id="6" precision="I32">
154
+ <dim>-1</dim>
155
+ </port>
156
+ <port id="7" precision="U8">
157
+ <dim>-1</dim>
158
+ </port>
159
+ </output>
160
+ </layer>
161
+ <layer id="9" name="Constant_104326" type="Const" version="opset1">
162
+ <data element_type="u8" shape="2" offset="616715" size="2" />
163
+ <output>
164
+ <port id="0" precision="U8">
165
+ <dim>2</dim>
166
+ </port>
167
+ </output>
168
+ </layer>
169
+ <layer id="10" name="Constant_104328" type="Const" version="opset1">
170
+ <data element_type="u8" shape="0" offset="616717" size="1" />
171
+ <output>
172
+ <port id="0" precision="U8">
173
+ <dim>0</dim>
174
+ </port>
175
+ </output>
176
+ </layer>
177
+ <layer id="11" name="RegexNormalization_104329" type="RegexNormalization" version="extension">
178
+ <data global_replace="true" />
179
+ <input>
180
+ <port id="0" precision="I32">
181
+ <dim>-1</dim>
182
+ </port>
183
+ <port id="1" precision="I32">
184
+ <dim>-1</dim>
185
+ </port>
186
+ <port id="2" precision="U8">
187
+ <dim>-1</dim>
188
+ </port>
189
+ <port id="3" precision="U8">
190
+ <dim>2</dim>
191
+ </port>
192
+ <port id="4" precision="U8">
193
+ <dim>0</dim>
194
+ </port>
195
+ </input>
196
+ <output>
197
+ <port id="5" precision="I32">
198
+ <dim>-1</dim>
199
+ </port>
200
+ <port id="6" precision="I32">
201
+ <dim>-1</dim>
202
+ </port>
203
+ <port id="7" precision="U8">
204
+ <dim>-1</dim>
205
+ </port>
206
+ </output>
207
+ </layer>
208
+ <layer id="12" name="Constant_104331" type="Const" version="opset1">
209
+ <data element_type="u8" shape="47" offset="616718" size="47" />
210
+ <output>
211
+ <port id="0" precision="U8">
212
+ <dim>47</dim>
213
+ </port>
214
+ </output>
215
+ </layer>
216
+ <layer id="13" name="Constant_104333" type="Const" version="opset1">
217
+ <data element_type="u8" shape="2" offset="616765" size="2" />
218
+ <output>
219
+ <port id="0" precision="U8">
220
+ <dim>2</dim>
221
+ </port>
222
+ </output>
223
+ </layer>
224
+ <layer id="14" name="RegexNormalization_104334" type="RegexNormalization" version="extension">
225
+ <data global_replace="true" />
226
+ <input>
227
+ <port id="0" precision="I32">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="1" precision="I32">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="2" precision="U8">
234
+ <dim>-1</dim>
235
+ </port>
236
+ <port id="3" precision="U8">
237
+ <dim>47</dim>
238
+ </port>
239
+ <port id="4" precision="U8">
240
+ <dim>2</dim>
241
+ </port>
242
+ </input>
243
+ <output>
244
+ <port id="5" precision="I32">
245
+ <dim>-1</dim>
246
+ </port>
247
+ <port id="6" precision="I32">
248
+ <dim>-1</dim>
249
+ </port>
250
+ <port id="7" precision="U8">
251
+ <dim>-1</dim>
252
+ </port>
253
+ </output>
254
+ </layer>
255
+ <layer id="15" name="StringTensorPack_104335" type="StringTensorPack" version="extension">
256
+ <data mode="begins_ends" />
257
+ <input>
258
+ <port id="0" precision="I32">
259
+ <dim>-1</dim>
260
+ </port>
261
+ <port id="1" precision="I32">
262
+ <dim>-1</dim>
263
+ </port>
264
+ <port id="2" precision="U8">
265
+ <dim>-1</dim>
266
+ </port>
267
+ </input>
268
+ <output>
269
+ <port id="3" precision="STRING" names="string_output">
270
+ <dim>-1</dim>
271
+ </port>
272
+ </output>
273
+ </layer>
274
+ <layer id="16" name="Result_104336" type="Result" version="opset1">
275
+ <input>
276
+ <port id="0" precision="STRING">
277
+ <dim>-1</dim>
278
+ </port>
279
+ </input>
280
+ </layer>
281
+ </layers>
282
+ <edges>
283
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
284
+ <edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
285
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
286
+ <edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
287
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
288
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
289
+ <edge from-layer="4" from-port="4" to-layer="5" to-port="0" />
290
+ <edge from-layer="4" from-port="5" to-layer="5" to-port="1" />
291
+ <edge from-layer="4" from-port="6" to-layer="5" to-port="2" />
292
+ <edge from-layer="4" from-port="7" to-layer="5" to-port="3" />
293
+ <edge from-layer="4" from-port="8" to-layer="8" to-port="2" />
294
+ <edge from-layer="5" from-port="4" to-layer="8" to-port="0" />
295
+ <edge from-layer="5" from-port="5" to-layer="8" to-port="1" />
296
+ <edge from-layer="6" from-port="0" to-layer="8" to-port="3" />
297
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="4" />
298
+ <edge from-layer="8" from-port="5" to-layer="11" to-port="0" />
299
+ <edge from-layer="8" from-port="6" to-layer="11" to-port="1" />
300
+ <edge from-layer="8" from-port="7" to-layer="11" to-port="2" />
301
+ <edge from-layer="9" from-port="0" to-layer="11" to-port="3" />
302
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="4" />
303
+ <edge from-layer="11" from-port="5" to-layer="14" to-port="0" />
304
+ <edge from-layer="11" from-port="6" to-layer="14" to-port="1" />
305
+ <edge from-layer="11" from-port="7" to-layer="14" to-port="2" />
306
+ <edge from-layer="12" from-port="0" to-layer="14" to-port="3" />
307
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="4" />
308
+ <edge from-layer="14" from-port="5" to-layer="15" to-port="0" />
309
+ <edge from-layer="14" from-port="6" to-layer="15" to-port="1" />
310
+ <edge from-layer="14" from-port="7" to-layer="15" to-port="2" />
311
+ <edge from-layer="15" from-port="3" to-layer="16" to-port="0" />
312
+ </edges>
313
+ <rt_info>
314
+ <add_attention_mask value="True" />
315
+ <add_prefix_space />
316
+ <add_special_tokens value="True" />
317
+ <bos_token_id value="49406" />
318
+ <clean_up_tokenization_spaces />
319
+ <detokenizer_input_type value="i64" />
320
+ <eos_token_id value="49407" />
321
+ <handle_special_tokens_with_re />
322
+ <number_of_inputs value="1" />
323
+ <openvino_tokenizers_version value="2024.5.0.0" />
324
+ <openvino_version value="2024.5.0" />
325
+ <original_tokenizer_class value="&lt;class 'transformers.models.clip.tokenization_clip_fast.CLIPTokenizerFast'>" />
326
+ <pad_token_id value="49407" />
327
+ <sentencepiece_version value="0.2.0" />
328
+ <skip_special_tokens value="True" />
329
+ <streaming_detokenizer value="False" />
330
+ <tiktoken_version value="0.8.0" />
331
+ <tokenizer_output_type value="i64" />
332
+ <tokenizers_version value="0.20.3" />
333
+ <transformers_version value="4.46.2" />
334
+ <use_max_padding value="False" />
335
+ <use_sentencepiece_backend value="False" />
336
+ <utf8_replace_mode />
337
+ <with_detokenizer value="True" />
338
+ </rt_info>
339
+ </net>
tokenizer/openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:653d6f2b0bbd68ae2f888cf7fb68585f860dbd6cd28b74abd375daa6a255adfa
3
+ size 1425650
tokenizer/openvino_tokenizer.xml ADDED
@@ -0,0 +1,995 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_104190" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_104190">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_104298" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_104299" type="Const" version="opset1">
19
+ <data element_type="i32" shape="" offset="4" size="4" />
20
+ <output>
21
+ <port id="0" precision="I32" />
22
+ </output>
23
+ </layer>
24
+ <layer id="3" name="Constant_104300" type="Const" version="opset1">
25
+ <data element_type="i32" shape="1" offset="8" size="4" />
26
+ <output>
27
+ <port id="0" precision="I32">
28
+ <dim>1</dim>
29
+ </port>
30
+ </output>
31
+ </layer>
32
+ <layer id="4" name="Constant_104196" type="Const" version="opset1">
33
+ <data element_type="i64" shape="" offset="12" size="8" />
34
+ <output>
35
+ <port id="0" precision="I64" />
36
+ </output>
37
+ </layer>
38
+ <layer id="5" name="StringTensorUnpack_104191" type="StringTensorUnpack" version="extension">
39
+ <data mode="begins_ends" />
40
+ <input>
41
+ <port id="0" precision="STRING">
42
+ <dim>-1</dim>
43
+ </port>
44
+ </input>
45
+ <output>
46
+ <port id="1" precision="I32">
47
+ <dim>-1</dim>
48
+ </port>
49
+ <port id="2" precision="I32">
50
+ <dim>-1</dim>
51
+ </port>
52
+ <port id="3" precision="U8">
53
+ <dim>-1</dim>
54
+ </port>
55
+ </output>
56
+ </layer>
57
+ <layer id="6" name="ShapeOf_104192" type="ShapeOf" version="opset3">
58
+ <data output_type="i64" />
59
+ <input>
60
+ <port id="0" precision="I32">
61
+ <dim>-1</dim>
62
+ </port>
63
+ </input>
64
+ <output>
65
+ <port id="1" precision="I64">
66
+ <dim>1</dim>
67
+ </port>
68
+ </output>
69
+ </layer>
70
+ <layer id="7" name="Constant_104193" type="Const" version="opset1">
71
+ <data element_type="i64" shape="" offset="12" size="8" />
72
+ <output>
73
+ <port id="0" precision="I64" />
74
+ </output>
75
+ </layer>
76
+ <layer id="8" name="Constant_104194" type="Const" version="opset1">
77
+ <data element_type="i64" shape="" offset="12" size="8" />
78
+ <output>
79
+ <port id="0" precision="I64" />
80
+ </output>
81
+ </layer>
82
+ <layer id="9" name="Gather_104195" type="Gather" version="opset8">
83
+ <data batch_dims="0" />
84
+ <input>
85
+ <port id="0" precision="I64">
86
+ <dim>1</dim>
87
+ </port>
88
+ <port id="1" precision="I64" />
89
+ <port id="2" precision="I64" />
90
+ </input>
91
+ <output>
92
+ <port id="3" precision="I64" />
93
+ </output>
94
+ </layer>
95
+ <layer id="10" name="Constant_104197" type="Const" version="opset1">
96
+ <data element_type="i64" shape="" offset="20" size="8" />
97
+ <output>
98
+ <port id="0" precision="I64" />
99
+ </output>
100
+ </layer>
101
+ <layer id="11" name="Range_104198" type="Range" version="opset4">
102
+ <data output_type="i32" />
103
+ <input>
104
+ <port id="0" precision="I64" />
105
+ <port id="1" precision="I64" />
106
+ <port id="2" precision="I64" />
107
+ </input>
108
+ <output>
109
+ <port id="3" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="12" name="Constant_104199" type="Const" version="opset1">
115
+ <data element_type="i64" shape="" offset="20" size="8" />
116
+ <output>
117
+ <port id="0" precision="I64" />
118
+ </output>
119
+ </layer>
120
+ <layer id="13" name="Constant_104200" type="Const" version="opset1">
121
+ <data element_type="i64" shape="" offset="20" size="8" />
122
+ <output>
123
+ <port id="0" precision="I64" />
124
+ </output>
125
+ </layer>
126
+ <layer id="14" name="Add_104201" type="Add" version="opset1">
127
+ <data auto_broadcast="numpy" />
128
+ <input>
129
+ <port id="0" precision="I64" />
130
+ <port id="1" precision="I64" />
131
+ </input>
132
+ <output>
133
+ <port id="2" precision="I64" />
134
+ </output>
135
+ </layer>
136
+ <layer id="15" name="Constant_104202" type="Const" version="opset1">
137
+ <data element_type="i64" shape="" offset="20" size="8" />
138
+ <output>
139
+ <port id="0" precision="I64" />
140
+ </output>
141
+ </layer>
142
+ <layer id="16" name="Range_104203" type="Range" version="opset4">
143
+ <data output_type="i32" />
144
+ <input>
145
+ <port id="0" precision="I64" />
146
+ <port id="1" precision="I64" />
147
+ <port id="2" precision="I64" />
148
+ </input>
149
+ <output>
150
+ <port id="3" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ </output>
154
+ </layer>
155
+ <layer id="17" name="Constant_104265" type="Const" version="opset1">
156
+ <data element_type="u8" shape="41" offset="28" size="41" />
157
+ <output>
158
+ <port id="0" precision="U8">
159
+ <dim>41</dim>
160
+ </port>
161
+ </output>
162
+ </layer>
163
+ <layer id="18" name="SpecialTokensSplit_104266" type="SpecialTokensSplit" version="extension">
164
+ <input>
165
+ <port id="0" precision="I32">
166
+ <dim>-1</dim>
167
+ </port>
168
+ <port id="1" precision="I32">
169
+ <dim>-1</dim>
170
+ </port>
171
+ <port id="2" precision="I32">
172
+ <dim>-1</dim>
173
+ </port>
174
+ <port id="3" precision="I32">
175
+ <dim>-1</dim>
176
+ </port>
177
+ <port id="4" precision="U8">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="5" precision="U8">
181
+ <dim>41</dim>
182
+ </port>
183
+ </input>
184
+ <output>
185
+ <port id="6" precision="I32">
186
+ <dim>-1</dim>
187
+ </port>
188
+ <port id="7" precision="I32">
189
+ <dim>-1</dim>
190
+ </port>
191
+ <port id="8" precision="I32">
192
+ <dim>-1</dim>
193
+ </port>
194
+ <port id="9" precision="I32">
195
+ <dim>-1</dim>
196
+ </port>
197
+ <port id="10" precision="U8">
198
+ <dim>-1</dim>
199
+ </port>
200
+ <port id="11" precision="BOOL">
201
+ <dim>-1</dim>
202
+ </port>
203
+ </output>
204
+ </layer>
205
+ <layer id="19" name="NormalizeUnicode_104267" type="NormalizeUnicode" version="extension">
206
+ <data normalization_form="NFC" />
207
+ <input>
208
+ <port id="0" precision="I32">
209
+ <dim>-1</dim>
210
+ </port>
211
+ <port id="1" precision="I32">
212
+ <dim>-1</dim>
213
+ </port>
214
+ <port id="2" precision="U8">
215
+ <dim>-1</dim>
216
+ </port>
217
+ <port id="3" precision="BOOL">
218
+ <dim>-1</dim>
219
+ </port>
220
+ </input>
221
+ <output>
222
+ <port id="4" precision="I32">
223
+ <dim>-1</dim>
224
+ </port>
225
+ <port id="5" precision="I32">
226
+ <dim>-1</dim>
227
+ </port>
228
+ <port id="6" precision="U8">
229
+ <dim>-1</dim>
230
+ </port>
231
+ <port id="7" precision="BOOL">
232
+ <dim>-1</dim>
233
+ </port>
234
+ </output>
235
+ </layer>
236
+ <layer id="20" name="Constant_104269" type="Const" version="opset1">
237
+ <data element_type="u8" shape="3" offset="69" size="3" />
238
+ <output>
239
+ <port id="0" precision="U8">
240
+ <dim>3</dim>
241
+ </port>
242
+ </output>
243
+ </layer>
244
+ <layer id="21" name="Constant_104271" type="Const" version="opset1">
245
+ <data element_type="u8" shape="1" offset="72" size="1" />
246
+ <output>
247
+ <port id="0" precision="U8">
248
+ <dim>1</dim>
249
+ </port>
250
+ </output>
251
+ </layer>
252
+ <layer id="22" name="RegexNormalization_104272" type="RegexNormalization" version="extension">
253
+ <data global_replace="true" />
254
+ <input>
255
+ <port id="0" precision="I32">
256
+ <dim>-1</dim>
257
+ </port>
258
+ <port id="1" precision="I32">
259
+ <dim>-1</dim>
260
+ </port>
261
+ <port id="2" precision="U8">
262
+ <dim>-1</dim>
263
+ </port>
264
+ <port id="3" precision="BOOL">
265
+ <dim>-1</dim>
266
+ </port>
267
+ <port id="4" precision="U8">
268
+ <dim>3</dim>
269
+ </port>
270
+ <port id="5" precision="U8">
271
+ <dim>1</dim>
272
+ </port>
273
+ </input>
274
+ <output>
275
+ <port id="6" precision="I32">
276
+ <dim>-1</dim>
277
+ </port>
278
+ <port id="7" precision="I32">
279
+ <dim>-1</dim>
280
+ </port>
281
+ <port id="8" precision="U8">
282
+ <dim>-1</dim>
283
+ </port>
284
+ <port id="9" precision="BOOL">
285
+ <dim>-1</dim>
286
+ </port>
287
+ </output>
288
+ </layer>
289
+ <layer id="23" name="CaseFold_104273" type="CaseFold" version="extension">
290
+ <data encoding="utf-8" />
291
+ <input>
292
+ <port id="0" precision="I32">
293
+ <dim>-1</dim>
294
+ </port>
295
+ <port id="1" precision="I32">
296
+ <dim>-1</dim>
297
+ </port>
298
+ <port id="2" precision="U8">
299
+ <dim>-1</dim>
300
+ </port>
301
+ <port id="3" precision="BOOL">
302
+ <dim>-1</dim>
303
+ </port>
304
+ </input>
305
+ <output>
306
+ <port id="4" precision="I32">
307
+ <dim>-1</dim>
308
+ </port>
309
+ <port id="5" precision="I32">
310
+ <dim>-1</dim>
311
+ </port>
312
+ <port id="6" precision="U8">
313
+ <dim>-1</dim>
314
+ </port>
315
+ <port id="7" precision="BOOL">
316
+ <dim>-1</dim>
317
+ </port>
318
+ </output>
319
+ </layer>
320
+ <layer id="24" name="Constant_104275" type="Const" version="opset1">
321
+ <data element_type="u8" shape="57" offset="73" size="57" />
322
+ <output>
323
+ <port id="0" precision="U8">
324
+ <dim>57</dim>
325
+ </port>
326
+ </output>
327
+ </layer>
328
+ <layer id="25" name="RegexSplit_104276" type="RegexSplit" version="extension">
329
+ <data behaviour="remove" invert="true" max_splits="-1" />
330
+ <input>
331
+ <port id="0" precision="I32">
332
+ <dim>-1</dim>
333
+ </port>
334
+ <port id="1" precision="I32">
335
+ <dim>-1</dim>
336
+ </port>
337
+ <port id="2" precision="I32">
338
+ <dim>-1</dim>
339
+ </port>
340
+ <port id="3" precision="I32">
341
+ <dim>-1</dim>
342
+ </port>
343
+ <port id="4" precision="U8">
344
+ <dim>-1</dim>
345
+ </port>
346
+ <port id="5" precision="BOOL">
347
+ <dim>-1</dim>
348
+ </port>
349
+ <port id="6" precision="U8">
350
+ <dim>57</dim>
351
+ </port>
352
+ </input>
353
+ <output>
354
+ <port id="7" precision="I32">
355
+ <dim>-1</dim>
356
+ </port>
357
+ <port id="8" precision="I32">
358
+ <dim>-1</dim>
359
+ </port>
360
+ <port id="9" precision="I32">
361
+ <dim>-1</dim>
362
+ </port>
363
+ <port id="10" precision="I32">
364
+ <dim>-1</dim>
365
+ </port>
366
+ <port id="11" precision="U8">
367
+ <dim>-1</dim>
368
+ </port>
369
+ <port id="12" precision="BOOL">
370
+ <dim>-1</dim>
371
+ </port>
372
+ </output>
373
+ </layer>
374
+ <layer id="26" name="Constant_104278" type="Const" version="opset1">
375
+ <data element_type="u8" shape="64" offset="130" size="64" />
376
+ <output>
377
+ <port id="0" precision="U8">
378
+ <dim>64</dim>
379
+ </port>
380
+ </output>
381
+ </layer>
382
+ <layer id="27" name="RegexSplit_104279" type="RegexSplit" version="extension">
383
+ <data behaviour="isolate" invert="false" max_splits="-1" />
384
+ <input>
385
+ <port id="0" precision="I32">
386
+ <dim>-1</dim>
387
+ </port>
388
+ <port id="1" precision="I32">
389
+ <dim>-1</dim>
390
+ </port>
391
+ <port id="2" precision="I32">
392
+ <dim>-1</dim>
393
+ </port>
394
+ <port id="3" precision="I32">
395
+ <dim>-1</dim>
396
+ </port>
397
+ <port id="4" precision="U8">
398
+ <dim>-1</dim>
399
+ </port>
400
+ <port id="5" precision="BOOL">
401
+ <dim>-1</dim>
402
+ </port>
403
+ <port id="6" precision="U8">
404
+ <dim>64</dim>
405
+ </port>
406
+ </input>
407
+ <output>
408
+ <port id="7" precision="I32">
409
+ <dim>-1</dim>
410
+ </port>
411
+ <port id="8" precision="I32">
412
+ <dim>-1</dim>
413
+ </port>
414
+ <port id="9" precision="I32">
415
+ <dim>-1</dim>
416
+ </port>
417
+ <port id="10" precision="I32">
418
+ <dim>-1</dim>
419
+ </port>
420
+ <port id="11" precision="U8">
421
+ <dim>-1</dim>
422
+ </port>
423
+ <port id="12" precision="BOOL">
424
+ <dim>-1</dim>
425
+ </port>
426
+ </output>
427
+ </layer>
428
+ <layer id="28" name="Constant_104281" type="Const" version="opset1">
429
+ <data element_type="u8" shape="616710" offset="194" size="616710" />
430
+ <output>
431
+ <port id="0" precision="U8">
432
+ <dim>616710</dim>
433
+ </port>
434
+ </output>
435
+ </layer>
436
+ <layer id="29" name="StringTensorUnpack_104282" type="StringTensorUnpack" version="extension">
437
+ <data mode="begins_ends" />
438
+ <input>
439
+ <port id="0" precision="U8">
440
+ <dim>616710</dim>
441
+ </port>
442
+ </input>
443
+ <output>
444
+ <port id="1" precision="I32">
445
+ <dim>-1</dim>
446
+ </port>
447
+ <port id="2" precision="I32">
448
+ <dim>-1</dim>
449
+ </port>
450
+ <port id="3" precision="U8">
451
+ <dim>-1</dim>
452
+ </port>
453
+ </output>
454
+ </layer>
455
+ <layer id="30" name="Constant_104287" type="Const" version="opset1">
456
+ <data element_type="u8" shape="340738" offset="616904" size="340738" />
457
+ <output>
458
+ <port id="0" precision="U8">
459
+ <dim>340738</dim>
460
+ </port>
461
+ </output>
462
+ </layer>
463
+ <layer id="31" name="StringTensorUnpack_104288" type="StringTensorUnpack" version="extension">
464
+ <data mode="begins_ends" />
465
+ <input>
466
+ <port id="0" precision="U8">
467
+ <dim>340738</dim>
468
+ </port>
469
+ </input>
470
+ <output>
471
+ <port id="1" precision="I32">
472
+ <dim>-1</dim>
473
+ </port>
474
+ <port id="2" precision="I32">
475
+ <dim>-1</dim>
476
+ </port>
477
+ <port id="3" precision="U8">
478
+ <dim>-1</dim>
479
+ </port>
480
+ </output>
481
+ </layer>
482
+ <layer id="32" name="Constant_104290" type="Const" version="opset1">
483
+ <data element_type="u8" shape="467936" offset="957642" size="467936" />
484
+ <output>
485
+ <port id="0" precision="U8">
486
+ <dim>467936</dim>
487
+ </port>
488
+ </output>
489
+ </layer>
490
+ <layer id="33" name="StringTensorUnpack_104291" type="StringTensorUnpack" version="extension">
491
+ <data mode="begins_ends" />
492
+ <input>
493
+ <port id="0" precision="U8">
494
+ <dim>467936</dim>
495
+ </port>
496
+ </input>
497
+ <output>
498
+ <port id="1" precision="I32">
499
+ <dim>-1</dim>
500
+ </port>
501
+ <port id="2" precision="I32">
502
+ <dim>-1</dim>
503
+ </port>
504
+ <port id="3" precision="U8">
505
+ <dim>-1</dim>
506
+ </port>
507
+ </output>
508
+ </layer>
509
+ <layer id="34" name="Constant_104284" type="Const" version="opset1">
510
+ <data element_type="u8" shape="44" offset="1425578" size="44" />
511
+ <output>
512
+ <port id="0" precision="U8">
513
+ <dim>44</dim>
514
+ </port>
515
+ </output>
516
+ </layer>
517
+ <layer id="35" name="StringTensorUnpack_104285" type="StringTensorUnpack" version="extension">
518
+ <data mode="begins_ends" />
519
+ <input>
520
+ <port id="0" precision="U8">
521
+ <dim>44</dim>
522
+ </port>
523
+ </input>
524
+ <output>
525
+ <port id="1" precision="I32">
526
+ <dim>-1</dim>
527
+ </port>
528
+ <port id="2" precision="I32">
529
+ <dim>-1</dim>
530
+ </port>
531
+ <port id="3" precision="U8">
532
+ <dim>-1</dim>
533
+ </port>
534
+ </output>
535
+ </layer>
536
+ <layer id="36" name="Constant_104292" type="Const" version="opset1">
537
+ <data element_type="i32" shape="2" offset="1425622" size="8" />
538
+ <output>
539
+ <port id="0" precision="I32">
540
+ <dim>2</dim>
541
+ </port>
542
+ </output>
543
+ </layer>
544
+ <layer id="37" name="BPETokenizer_104293" type="BPETokenizer" version="extension">
545
+ <data unk_token="&lt;|endoftext|>" fuse_unk="false" suffix_indicator="" end_suffix="&lt;/w>" byte_fallback="false" cache_capacity="20000" />
546
+ <input>
547
+ <port id="0" precision="I32">
548
+ <dim>-1</dim>
549
+ </port>
550
+ <port id="1" precision="I32">
551
+ <dim>-1</dim>
552
+ </port>
553
+ <port id="2" precision="I32">
554
+ <dim>-1</dim>
555
+ </port>
556
+ <port id="3" precision="I32">
557
+ <dim>-1</dim>
558
+ </port>
559
+ <port id="4" precision="U8">
560
+ <dim>-1</dim>
561
+ </port>
562
+ <port id="5" precision="I32">
563
+ <dim>-1</dim>
564
+ </port>
565
+ <port id="6" precision="I32">
566
+ <dim>-1</dim>
567
+ </port>
568
+ <port id="7" precision="U8">
569
+ <dim>-1</dim>
570
+ </port>
571
+ <port id="8" precision="I32">
572
+ <dim>-1</dim>
573
+ </port>
574
+ <port id="9" precision="I32">
575
+ <dim>-1</dim>
576
+ </port>
577
+ <port id="10" precision="U8">
578
+ <dim>-1</dim>
579
+ </port>
580
+ <port id="11" precision="I32">
581
+ <dim>-1</dim>
582
+ </port>
583
+ <port id="12" precision="I32">
584
+ <dim>-1</dim>
585
+ </port>
586
+ <port id="13" precision="U8">
587
+ <dim>-1</dim>
588
+ </port>
589
+ <port id="14" precision="I32">
590
+ <dim>-1</dim>
591
+ </port>
592
+ <port id="15" precision="I32">
593
+ <dim>-1</dim>
594
+ </port>
595
+ <port id="16" precision="U8">
596
+ <dim>-1</dim>
597
+ </port>
598
+ <port id="17" precision="I32">
599
+ <dim>2</dim>
600
+ </port>
601
+ </input>
602
+ <output>
603
+ <port id="18" precision="I32">
604
+ <dim>-1</dim>
605
+ </port>
606
+ <port id="19" precision="I32">
607
+ <dim>-1</dim>
608
+ </port>
609
+ <port id="20" precision="I32">
610
+ <dim>-1</dim>
611
+ </port>
612
+ </output>
613
+ </layer>
614
+ <layer id="38" name="Subtract_104294" type="Subtract" version="opset1">
615
+ <data auto_broadcast="numpy" />
616
+ <input>
617
+ <port id="0" precision="I32">
618
+ <dim>-1</dim>
619
+ </port>
620
+ <port id="1" precision="I32">
621
+ <dim>-1</dim>
622
+ </port>
623
+ </input>
624
+ <output>
625
+ <port id="2" precision="I32">
626
+ <dim>-1</dim>
627
+ </port>
628
+ </output>
629
+ </layer>
630
+ <layer id="39" name="Constant_104295" type="Const" version="opset1">
631
+ <data element_type="i32" shape="" offset="1425630" size="4" />
632
+ <output>
633
+ <port id="0" precision="I32" />
634
+ </output>
635
+ </layer>
636
+ <layer id="40" name="Minimum_104296" type="Minimum" version="opset1">
637
+ <data auto_broadcast="numpy" />
638
+ <input>
639
+ <port id="0" precision="I32">
640
+ <dim>-1</dim>
641
+ </port>
642
+ <port id="1" precision="I32" />
643
+ </input>
644
+ <output>
645
+ <port id="2" precision="I32">
646
+ <dim>-1</dim>
647
+ </port>
648
+ </output>
649
+ </layer>
650
+ <layer id="41" name="Add_104297" type="Add" version="opset1">
651
+ <data auto_broadcast="numpy" />
652
+ <input>
653
+ <port id="0" precision="I32">
654
+ <dim>-1</dim>
655
+ </port>
656
+ <port id="1" precision="I32">
657
+ <dim>-1</dim>
658
+ </port>
659
+ </input>
660
+ <output>
661
+ <port id="2" precision="I32">
662
+ <dim>-1</dim>
663
+ </port>
664
+ </output>
665
+ </layer>
666
+ <layer id="42" name="Constant_104301" type="Const" version="opset1">
667
+ <data element_type="i32" shape="" offset="0" size="4" />
668
+ <output>
669
+ <port id="0" precision="I32" />
670
+ </output>
671
+ </layer>
672
+ <layer id="43" name="Constant_104302" type="Const" version="opset1">
673
+ <data element_type="i32" shape="" offset="4" size="4" />
674
+ <output>
675
+ <port id="0" precision="I32" />
676
+ </output>
677
+ </layer>
678
+ <layer id="44" name="Constant_104303" type="Const" version="opset1">
679
+ <data element_type="i32" shape="1" offset="1425634" size="4" />
680
+ <output>
681
+ <port id="0" precision="I32">
682
+ <dim>1</dim>
683
+ </port>
684
+ </output>
685
+ </layer>
686
+ <layer id="45" name="Constant_104304" type="Const" version="opset1">
687
+ <data element_type="i32" shape="3" offset="1425638" size="12" />
688
+ <output>
689
+ <port id="0" precision="I32">
690
+ <dim>3</dim>
691
+ </port>
692
+ </output>
693
+ </layer>
694
+ <layer id="46" name="CombineSegments_104305" type="CombineSegments" version="extension">
695
+ <input>
696
+ <port id="0" precision="I32" />
697
+ <port id="1" precision="I32" />
698
+ <port id="2" precision="I32">
699
+ <dim>1</dim>
700
+ </port>
701
+ <port id="3" precision="I32">
702
+ <dim>-1</dim>
703
+ </port>
704
+ <port id="4" precision="I32">
705
+ <dim>-1</dim>
706
+ </port>
707
+ <port id="5" precision="I32">
708
+ <dim>-1</dim>
709
+ </port>
710
+ <port id="6" precision="I32" />
711
+ <port id="7" precision="I32" />
712
+ <port id="8" precision="I32">
713
+ <dim>1</dim>
714
+ </port>
715
+ <port id="9" precision="I32">
716
+ <dim>3</dim>
717
+ </port>
718
+ </input>
719
+ <output>
720
+ <port id="10" precision="I32">
721
+ <dim>-1</dim>
722
+ </port>
723
+ <port id="11" precision="I32">
724
+ <dim>-1</dim>
725
+ </port>
726
+ <port id="12" precision="I32">
727
+ <dim>-1</dim>
728
+ </port>
729
+ <port id="13" precision="I32">
730
+ <dim>-1</dim>
731
+ </port>
732
+ <port id="14" precision="I32">
733
+ <dim>-1</dim>
734
+ </port>
735
+ <port id="15" precision="I32">
736
+ <dim>-1</dim>
737
+ </port>
738
+ </output>
739
+ </layer>
740
+ <layer id="47" name="Subtract_104306" type="Subtract" version="opset1">
741
+ <data auto_broadcast="numpy" />
742
+ <input>
743
+ <port id="0" precision="I32">
744
+ <dim>-1</dim>
745
+ </port>
746
+ <port id="1" precision="I32">
747
+ <dim>-1</dim>
748
+ </port>
749
+ </input>
750
+ <output>
751
+ <port id="2" precision="I32">
752
+ <dim>-1</dim>
753
+ </port>
754
+ </output>
755
+ </layer>
756
+ <layer id="48" name="Constant_104307" type="Const" version="opset1">
757
+ <data element_type="i32" shape="" offset="0" size="4" />
758
+ <output>
759
+ <port id="0" precision="I32" />
760
+ </output>
761
+ </layer>
762
+ <layer id="49" name="ReduceMax_104308" type="ReduceMax" version="opset1">
763
+ <data keep_dims="false" />
764
+ <input>
765
+ <port id="0" precision="I32">
766
+ <dim>-1</dim>
767
+ </port>
768
+ <port id="1" precision="I32" />
769
+ </input>
770
+ <output>
771
+ <port id="2" precision="I32" />
772
+ </output>
773
+ </layer>
774
+ <layer id="50" name="Constant_104309" type="Const" version="opset1">
775
+ <data element_type="i32" shape="" offset="1425634" size="4" />
776
+ <output>
777
+ <port id="0" precision="I32" />
778
+ </output>
779
+ </layer>
780
+ <layer id="51" name="RaggedToDense_104310" type="RaggedToDense" version="extension">
781
+ <data pad_right="true" />
782
+ <input>
783
+ <port id="0" precision="I32">
784
+ <dim>-1</dim>
785
+ </port>
786
+ <port id="1" precision="I32">
787
+ <dim>-1</dim>
788
+ </port>
789
+ <port id="2" precision="I32">
790
+ <dim>-1</dim>
791
+ </port>
792
+ <port id="3" precision="I32" />
793
+ <port id="4" precision="I32" />
794
+ </input>
795
+ <output>
796
+ <port id="5" precision="I32">
797
+ <dim>-1</dim>
798
+ <dim>-1</dim>
799
+ </port>
800
+ <port id="6" precision="BOOL">
801
+ <dim>-1</dim>
802
+ <dim>-1</dim>
803
+ </port>
804
+ </output>
805
+ </layer>
806
+ <layer id="52" name="Convert_104311" type="Convert" version="opset1">
807
+ <data destination_type="i32" />
808
+ <input>
809
+ <port id="0" precision="BOOL">
810
+ <dim>-1</dim>
811
+ <dim>-1</dim>
812
+ </port>
813
+ </input>
814
+ <output>
815
+ <port id="1" precision="I32">
816
+ <dim>-1</dim>
817
+ <dim>-1</dim>
818
+ </port>
819
+ </output>
820
+ </layer>
821
+ <layer id="53" name="Convert_104311" type="Convert" version="opset1">
822
+ <data destination_type="i64" />
823
+ <input>
824
+ <port id="0" precision="I32">
825
+ <dim>-1</dim>
826
+ <dim>-1</dim>
827
+ </port>
828
+ </input>
829
+ <output>
830
+ <port id="1" precision="I64" names="attention_mask">
831
+ <dim>-1</dim>
832
+ <dim>-1</dim>
833
+ </port>
834
+ </output>
835
+ </layer>
836
+ <layer id="55" name="RaggedToDense_104310.0" type="Convert" version="opset1">
837
+ <data destination_type="i64" />
838
+ <input>
839
+ <port id="0" precision="I32">
840
+ <dim>-1</dim>
841
+ <dim>-1</dim>
842
+ </port>
843
+ </input>
844
+ <output>
845
+ <port id="1" precision="I64" names="input_ids">
846
+ <dim>-1</dim>
847
+ <dim>-1</dim>
848
+ </port>
849
+ </output>
850
+ </layer>
851
+ <layer id="56" name="Result_104314" type="Result" version="opset1">
852
+ <input>
853
+ <port id="0" precision="I64">
854
+ <dim>-1</dim>
855
+ <dim>-1</dim>
856
+ </port>
857
+ </input>
858
+ </layer>
859
+ <layer id="54" name="Result_104316" type="Result" version="opset1">
860
+ <input>
861
+ <port id="0" precision="I64">
862
+ <dim>-1</dim>
863
+ <dim>-1</dim>
864
+ </port>
865
+ </input>
866
+ </layer>
867
+ </layers>
868
+ <edges>
869
+ <edge from-layer="0" from-port="0" to-layer="5" to-port="0" />
870
+ <edge from-layer="1" from-port="0" to-layer="46" to-port="0" />
871
+ <edge from-layer="2" from-port="0" to-layer="46" to-port="1" />
872
+ <edge from-layer="3" from-port="0" to-layer="46" to-port="2" />
873
+ <edge from-layer="4" from-port="0" to-layer="11" to-port="0" />
874
+ <edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
875
+ <edge from-layer="5" from-port="3" to-layer="18" to-port="4" />
876
+ <edge from-layer="5" from-port="2" to-layer="18" to-port="3" />
877
+ <edge from-layer="5" from-port="1" to-layer="18" to-port="2" />
878
+ <edge from-layer="6" from-port="1" to-layer="9" to-port="0" />
879
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="1" />
880
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="2" />
881
+ <edge from-layer="9" from-port="3" to-layer="11" to-port="1" />
882
+ <edge from-layer="9" from-port="3" to-layer="14" to-port="0" />
883
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
884
+ <edge from-layer="11" from-port="3" to-layer="18" to-port="0" />
885
+ <edge from-layer="12" from-port="0" to-layer="16" to-port="0" />
886
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
887
+ <edge from-layer="14" from-port="2" to-layer="16" to-port="1" />
888
+ <edge from-layer="15" from-port="0" to-layer="16" to-port="2" />
889
+ <edge from-layer="16" from-port="3" to-layer="18" to-port="1" />
890
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
891
+ <edge from-layer="18" from-port="6" to-layer="25" to-port="0" />
892
+ <edge from-layer="18" from-port="7" to-layer="25" to-port="1" />
893
+ <edge from-layer="18" from-port="11" to-layer="19" to-port="3" />
894
+ <edge from-layer="18" from-port="10" to-layer="19" to-port="2" />
895
+ <edge from-layer="18" from-port="9" to-layer="19" to-port="1" />
896
+ <edge from-layer="18" from-port="8" to-layer="19" to-port="0" />
897
+ <edge from-layer="19" from-port="5" to-layer="22" to-port="1" />
898
+ <edge from-layer="19" from-port="6" to-layer="22" to-port="2" />
899
+ <edge from-layer="19" from-port="7" to-layer="22" to-port="3" />
900
+ <edge from-layer="19" from-port="4" to-layer="22" to-port="0" />
901
+ <edge from-layer="20" from-port="0" to-layer="22" to-port="4" />
902
+ <edge from-layer="21" from-port="0" to-layer="22" to-port="5" />
903
+ <edge from-layer="22" from-port="9" to-layer="23" to-port="3" />
904
+ <edge from-layer="22" from-port="8" to-layer="23" to-port="2" />
905
+ <edge from-layer="22" from-port="7" to-layer="23" to-port="1" />
906
+ <edge from-layer="22" from-port="6" to-layer="23" to-port="0" />
907
+ <edge from-layer="23" from-port="5" to-layer="25" to-port="3" />
908
+ <edge from-layer="23" from-port="4" to-layer="25" to-port="2" />
909
+ <edge from-layer="23" from-port="7" to-layer="25" to-port="5" />
910
+ <edge from-layer="23" from-port="6" to-layer="25" to-port="4" />
911
+ <edge from-layer="24" from-port="0" to-layer="25" to-port="6" />
912
+ <edge from-layer="25" from-port="7" to-layer="27" to-port="0" />
913
+ <edge from-layer="25" from-port="8" to-layer="27" to-port="1" />
914
+ <edge from-layer="25" from-port="9" to-layer="27" to-port="2" />
915
+ <edge from-layer="25" from-port="10" to-layer="27" to-port="3" />
916
+ <edge from-layer="25" from-port="11" to-layer="27" to-port="4" />
917
+ <edge from-layer="25" from-port="12" to-layer="27" to-port="5" />
918
+ <edge from-layer="26" from-port="0" to-layer="27" to-port="6" />
919
+ <edge from-layer="27" from-port="7" to-layer="37" to-port="0" />
920
+ <edge from-layer="27" from-port="11" to-layer="37" to-port="4" />
921
+ <edge from-layer="27" from-port="10" to-layer="37" to-port="3" />
922
+ <edge from-layer="27" from-port="9" to-layer="37" to-port="2" />
923
+ <edge from-layer="27" from-port="8" to-layer="37" to-port="1" />
924
+ <edge from-layer="28" from-port="0" to-layer="29" to-port="0" />
925
+ <edge from-layer="29" from-port="1" to-layer="37" to-port="5" />
926
+ <edge from-layer="29" from-port="2" to-layer="37" to-port="6" />
927
+ <edge from-layer="29" from-port="3" to-layer="37" to-port="7" />
928
+ <edge from-layer="30" from-port="0" to-layer="31" to-port="0" />
929
+ <edge from-layer="31" from-port="1" to-layer="37" to-port="8" />
930
+ <edge from-layer="31" from-port="2" to-layer="37" to-port="9" />
931
+ <edge from-layer="31" from-port="3" to-layer="37" to-port="10" />
932
+ <edge from-layer="32" from-port="0" to-layer="33" to-port="0" />
933
+ <edge from-layer="33" from-port="3" to-layer="37" to-port="13" />
934
+ <edge from-layer="33" from-port="1" to-layer="37" to-port="11" />
935
+ <edge from-layer="33" from-port="2" to-layer="37" to-port="12" />
936
+ <edge from-layer="34" from-port="0" to-layer="35" to-port="0" />
937
+ <edge from-layer="35" from-port="1" to-layer="37" to-port="14" />
938
+ <edge from-layer="35" from-port="3" to-layer="37" to-port="16" />
939
+ <edge from-layer="35" from-port="2" to-layer="37" to-port="15" />
940
+ <edge from-layer="36" from-port="0" to-layer="37" to-port="17" />
941
+ <edge from-layer="37" from-port="19" to-layer="38" to-port="0" />
942
+ <edge from-layer="37" from-port="18" to-layer="38" to-port="1" />
943
+ <edge from-layer="37" from-port="18" to-layer="41" to-port="0" />
944
+ <edge from-layer="37" from-port="18" to-layer="46" to-port="3" />
945
+ <edge from-layer="37" from-port="20" to-layer="46" to-port="5" />
946
+ <edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
947
+ <edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
948
+ <edge from-layer="40" from-port="2" to-layer="41" to-port="1" />
949
+ <edge from-layer="41" from-port="2" to-layer="46" to-port="4" />
950
+ <edge from-layer="42" from-port="0" to-layer="46" to-port="6" />
951
+ <edge from-layer="43" from-port="0" to-layer="46" to-port="7" />
952
+ <edge from-layer="44" from-port="0" to-layer="46" to-port="8" />
953
+ <edge from-layer="45" from-port="0" to-layer="46" to-port="9" />
954
+ <edge from-layer="46" from-port="11" to-layer="51" to-port="1" />
955
+ <edge from-layer="46" from-port="12" to-layer="51" to-port="2" />
956
+ <edge from-layer="46" from-port="10" to-layer="51" to-port="0" />
957
+ <edge from-layer="46" from-port="10" to-layer="47" to-port="1" />
958
+ <edge from-layer="46" from-port="11" to-layer="47" to-port="0" />
959
+ <edge from-layer="47" from-port="2" to-layer="49" to-port="0" />
960
+ <edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
961
+ <edge from-layer="49" from-port="2" to-layer="51" to-port="3" />
962
+ <edge from-layer="50" from-port="0" to-layer="51" to-port="4" />
963
+ <edge from-layer="51" from-port="6" to-layer="52" to-port="0" />
964
+ <edge from-layer="51" from-port="5" to-layer="55" to-port="0" />
965
+ <edge from-layer="52" from-port="1" to-layer="53" to-port="0" />
966
+ <edge from-layer="53" from-port="1" to-layer="54" to-port="0" />
967
+ <edge from-layer="55" from-port="1" to-layer="56" to-port="0" />
968
+ </edges>
969
+ <rt_info>
970
+ <add_attention_mask value="True" />
971
+ <add_prefix_space />
972
+ <add_special_tokens value="True" />
973
+ <bos_token_id value="49406" />
974
+ <clean_up_tokenization_spaces />
975
+ <detokenizer_input_type value="i64" />
976
+ <eos_token_id value="49407" />
977
+ <handle_special_tokens_with_re />
978
+ <number_of_inputs value="1" />
979
+ <openvino_tokenizers_version value="2024.5.0.0" />
980
+ <openvino_version value="2024.5.0" />
981
+ <original_tokenizer_class value="&lt;class 'transformers.models.clip.tokenization_clip_fast.CLIPTokenizerFast'>" />
982
+ <pad_token_id value="49407" />
983
+ <sentencepiece_version value="0.2.0" />
984
+ <skip_special_tokens value="True" />
985
+ <streaming_detokenizer value="False" />
986
+ <tiktoken_version value="0.8.0" />
987
+ <tokenizer_output_type value="i64" />
988
+ <tokenizers_version value="0.20.3" />
989
+ <transformers_version value="4.46.2" />
990
+ <use_max_padding value="False" />
991
+ <use_sentencepiece_backend value="False" />
992
+ <utf8_replace_mode />
993
+ <with_detokenizer value="True" />
994
+ </rt_info>
995
+ </net>
unet/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "_class_name": "UNet2DConditionModel",
3
- "_diffusers_version": "0.27.2",
4
- "_name_or_path": "/nfs/ov-share-05/data/cv_bench_cache/DL_benchmarking_models/lcm-dreamshaper-v7/pytorch/unet",
5
  "act_fn": "silu",
6
  "addition_embed_type": null,
7
  "addition_embed_type_num_heads": 64,
@@ -65,4 +65,4 @@
65
  ],
66
  "upcast_attention": null,
67
  "use_linear_projection": false
68
- }
 
1
  {
2
  "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.31.0",
4
+ "_name_or_path": "OpenVINO/LCM_DreamShaper_v7-fp16-ov",
5
  "act_fn": "silu",
6
  "addition_embed_type": null,
7
  "addition_embed_type_num_heads": 64,
 
65
  ],
66
  "upcast_attention": null,
67
  "use_linear_projection": false
68
+ }
unet/openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c3b243f37ea76a746cc8e592ab39fdae6a38beb42a8d6679af21806f37514c7
3
- size 1719206436
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bef226124a8aec46ca09795732ab6bd7bd3436a1111ed90428d5c176c2306a3
3
+ size 1719206596
unet/openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff
 
vae_decoder/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "_class_name": "AutoencoderKL",
3
- "_diffusers_version": "0.27.2",
4
- "_name_or_path": "/nfs/ov-share-05/data/cv_bench_cache/DL_benchmarking_models/lcm-dreamshaper-v7/pytorch/vae",
5
  "act_fn": "silu",
6
  "block_out_channels": [
7
  128,
@@ -21,14 +21,18 @@
21
  "latents_mean": null,
22
  "latents_std": null,
23
  "layers_per_block": 2,
 
24
  "norm_num_groups": 32,
25
  "out_channels": 3,
26
  "sample_size": 768,
27
  "scaling_factor": 0.18215,
 
28
  "up_block_types": [
29
  "UpDecoderBlock2D",
30
  "UpDecoderBlock2D",
31
  "UpDecoderBlock2D",
32
  "UpDecoderBlock2D"
33
- ]
34
- }
 
 
 
1
  {
2
  "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.31.0",
4
+ "_name_or_path": "OpenVINO/LCM_DreamShaper_v7-fp16-ov",
5
  "act_fn": "silu",
6
  "block_out_channels": [
7
  128,
 
21
  "latents_mean": null,
22
  "latents_std": null,
23
  "layers_per_block": 2,
24
+ "mid_block_add_attention": true,
25
  "norm_num_groups": 32,
26
  "out_channels": 3,
27
  "sample_size": 768,
28
  "scaling_factor": 0.18215,
29
+ "shift_factor": null,
30
  "up_block_types": [
31
  "UpDecoderBlock2D",
32
  "UpDecoderBlock2D",
33
  "UpDecoderBlock2D",
34
  "UpDecoderBlock2D"
35
+ ],
36
+ "use_post_quant_conv": true,
37
+ "use_quant_conv": true
38
+ }
vae_decoder/openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7afd0ef37a4ea2e868e19b879e3b57a756662884c2fdb0460804bf3ca15b3afa
3
- size 98980558
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d12fbb05e01a2b25cb6407d70d9a54f3e56da37d510a436c984b627d98313cc
3
+ size 98980570
vae_decoder/openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff
 
vae_encoder/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "_class_name": "AutoencoderKL",
3
- "_diffusers_version": "0.27.2",
4
- "_name_or_path": "/nfs/ov-share-05/data/cv_bench_cache/DL_benchmarking_models/lcm-dreamshaper-v7/pytorch/vae",
5
  "act_fn": "silu",
6
  "block_out_channels": [
7
  128,
@@ -21,14 +21,18 @@
21
  "latents_mean": null,
22
  "latents_std": null,
23
  "layers_per_block": 2,
 
24
  "norm_num_groups": 32,
25
  "out_channels": 3,
26
  "sample_size": 768,
27
  "scaling_factor": 0.18215,
 
28
  "up_block_types": [
29
  "UpDecoderBlock2D",
30
  "UpDecoderBlock2D",
31
  "UpDecoderBlock2D",
32
  "UpDecoderBlock2D"
33
- ]
34
- }
 
 
 
1
  {
2
  "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.31.0",
4
+ "_name_or_path": "OpenVINO/LCM_DreamShaper_v7-fp16-ov",
5
  "act_fn": "silu",
6
  "block_out_channels": [
7
  128,
 
21
  "latents_mean": null,
22
  "latents_std": null,
23
  "layers_per_block": 2,
24
+ "mid_block_add_attention": true,
25
  "norm_num_groups": 32,
26
  "out_channels": 3,
27
  "sample_size": 768,
28
  "scaling_factor": 0.18215,
29
+ "shift_factor": null,
30
  "up_block_types": [
31
  "UpDecoderBlock2D",
32
  "UpDecoderBlock2D",
33
  "UpDecoderBlock2D",
34
  "UpDecoderBlock2D"
35
+ ],
36
+ "use_post_quant_conv": true,
37
+ "use_quant_conv": true
38
+ }
vae_encoder/openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed2db4328b5ce8392fe7e4540ea5b80f6ab440e77f61c3e3d00f8e9b665c21b4
3
- size 68327496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00dedab730f2f9faad3f6e9049bd09bdf90cb9d657ef4fed5c7cb7c824da7d8b
3
+ size 68327484
vae_encoder/openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff