--- license: cc-by-4.0 datasets: - RussRobin/SpatialQA language: - en tags: - Embodied AI - MLLM - VLM - Spatial Understanding - Phi-2 pipeline_tag: visual-question-answering --- SpatialBot is a VLM with spatial understanding and reasoning abilties, by precisely understanding depth maps and using them to do high-level tasks. In this HF repo, we provide the merged SpatialBot-3B, which is based on Phi-2 and SigLIP. It can perform well on general VLM tasks and spatial understanding benchmarks like SpatialBench. ## How to use SpatialBot-3B ### NOTE: We update the repo and quick start codes in 28 August, 2024. Please update your model and codes if you downloaded them before this date. 1. Install dependencies first: ``` pip install torch transformers accelerate pillow numpy ``` 2. Run the model: ``` import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings import numpy as np # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu model_name = 'RussRobin/SpatialBot-3B' offset_bos = 0 # create model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'What is the depth value of point <0.5,0.2>? Answer directly from depth map.' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \n\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('\n\n')] input_ids = torch.tensor(text_chunks[0] + [-201] + [-202] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device) image1 = Image.open('rgb.jpg') image2 = Image.open('depth.png') channels = len(image2.getbands()) if channels == 1: img = np.array(image2) height, width = img.shape three_channel_array = np.zeros((height, width, 3), dtype=np.uint8) three_channel_array[:, :, 0] = (img // 1024) * 4 three_channel_array[:, :, 1] = (img // 32) * 8 three_channel_array[:, :, 2] = (img % 32) * 8 image2 = Image.fromarray(three_channel_array, 'RGB') image_tensor = model.process_images([image1,image2], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()) ``` ### Paper: https://arxiv.org/abs/2406.13642 ### GitHub repo: https://github.com/BAAI-DCAI/SpatialBot ### SpatialBench, the benchmark: https://huggingface.co/datasets/RussRobin/SpatialBench ### CKPTs for SpatialBot-3B with LoRA: https://huggingface.co/RussRobin/SpatialBot-3B-LoRA