--- license: apache-2.0 tags: - axolotl - dpo - trl - llama-cpp - gguf-my-repo base_model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct datasets: - HumanLLMs/Human-Like-DPO-Dataset language: - en model-index: - name: Humanish-Qwen2.5-7B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 72.84 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 34.48 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.42 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.76 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard --- # Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model. --- Model details: - This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses. The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions. The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”. 🛠️ Training Configuration Base Model: Qwen2.5-7B-Instruct Framework: Axolotl v0.4.1 Hardware: 2x NVIDIA A100 (80 GB) GPUs Training Time: ~2 hours 15 minutes Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics See axolotl config axolotl version: 0.4.1 base_model: Qwen/Qwen2.5-7B-Instruct model_type: AutoModalForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: true load_in_4bit: false strict: false chat_template: chatml rl: dpo datasets: - path: HumanLLMs/humanish-dpo-project type: chatml.prompt_pairs chat_template: chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./humanish-qwen2.5-7b-instruct sequence_len: 8192 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 4 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Humanish-DPO wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: save_safetensors: true 💬 Prompt Template You can use ChatML prompt template while using the model: ChatML <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method: messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q4_K_M-GGUF --hf-file human-like-qwen2.5-7b-instruct-q4_k_m.gguf -c 2048 ```