alvarobartt's picture
alvarobartt HF staff
Update handler.py
bc5f69b verified
# Adapted from https://huggingface.co/nvidia/NVLM-D-72B#inference
import math
from typing import Any, Dict, List
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
import requests
from io import BytesIO
from PIL import Image
from transformers import AutoTokenizer, AutoModel
from huggingface_inference_toolkit.logging import logger
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio,
target_ratios,
orig_width,
orig_height,
image_size,
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_url, input_size=448, max_num=12):
response = requests.get(image_url)
image = Image.open(BytesIO(response.content)).convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(
image, image_size=input_size, use_thumbnail=True, max_num=max_num
)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model():
device_map = {}
world_size = torch.cuda.device_count()
num_layers = 80
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f"language_model.model.layers.{layer_cnt}"] = i
layer_cnt += 1
device_map["vision_model"] = 0
device_map["mlp1"] = 0
device_map["language_model.model.tok_embeddings"] = 0
device_map["language_model.model.embed_tokens"] = 0
device_map["language_model.output"] = 0
device_map["language_model.model.norm"] = 0
device_map["language_model.lm_head"] = 0
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0
return device_map
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
class EndpointHandler:
def __init__(self, model_dir: str, **kwargs: Any) -> None:
self.model = AutoModel.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True,
device_map=split_model(),
).eval()
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, use_fast=False
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
logger.info(f"Received incoming request with {data=}")
if "instances" in data:
logger.warning("Using `instances` instead of `inputs` is deprecated.")
data["inputs"] = data.pop("instances")
if "inputs" not in data:
raise ValueError(
"The request body must contain a key 'inputs' with a list of inputs."
)
if not isinstance(data["inputs"], list):
raise ValueError(
"The request inputs must be a list of dictionaries with either the key"
" 'prompt' or 'prompt' + 'image_url', and optionally including the key"
" 'generation_config'."
)
if not all(isinstance(input, dict) and "prompt" in input.keys() for input in data["inputs"]):
raise ValueError(
"The request inputs must be a list of dictionaries with either the key"
" 'prompt' or 'prompt' + 'image_url', and optionally including the key"
" 'generation_config'."
)
predictions = []
for input in data["inputs"]:
if "prompt" not in input:
raise ValueError(
"The request input body must contain at least the key 'prompt' with the prompt to use."
)
generation_config = input.get("generation_config", dict(max_new_tokens=1024, do_sample=False))
if "image_url" not in input:
# pure-text conversation
response, history = self.model.chat(
self.tokenizer,
None,
input["prompt"],
generation_config,
history=None,
return_history=True,
)
else:
# single-image single-round conversation
pixel_values = load_image(input["image_url"], max_num=6).to(
torch.bfloat16
)
response = self.model.chat(
self.tokenizer,
pixel_values,
f"<image>\n{input['prompt']}",
generation_config,
)
predictions.append(response)
return {"predictions": predictions}