Deploying Language Models on Azure Kubernetes: A Complete Beginner's Guide

Community Article Published November 11, 2024

Deploying Language Models on Azure Kubernetes Service (AKS) A Detailed Step-by-Step Implementation Guide Introduction This comprehensive guide explains how to deploy Large Language Models (LLMs) on Azure Kubernetes Service using the vLLM serving engine. Each step is broken down with detailed explanations of why it's necessary and how it contributes to the overall deployment.

Table of Contents Prerequisites

Infrastructure Setup

Kubernetes Configuration

Model Deployment

Testing and Validation

Production Considerations

Maintenance and Monitoring

Prerequisites Azure Infrastructure Requirements Azure Subscription

What: An active Azure subscription with billing enabled

Why: Required for creating and managing Azure resources

How to verify:

az account show Azure CLI

What: Command-line tool for managing Azure resources

Why: Enables automated resource creation and management

Installation:

For Ubuntu/Debian

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

For macOS

brew install azure-cli Kubernetes Tools

What: kubectl and related tools

Why: Required for interacting with Kubernetes clusters

Installation:

Install kubectl

az aks install-cli Required Permissions Azure Permissions

Contributor role or higher on subscription/resource group

Network Contributor for virtual network configuration

Why: Enables creation and management of all required resources

Hugging Face Account (for gated models)

Account with approved access to gated models

Access token with read permissions

Why: Required for downloading and using gated models like Llama

Infrastructure Setup

  1. Environment Preparation

Set environment variables

export MY_RESOURCE_GROUP_NAME="llm-deployment-rg" export MY_AKS_CLUSTER_NAME="llm-cluster" export LOCATION="eastus" Why these variables?

Resource group name: Logical container for related resources

Cluster name: Unique identifier for your AKS cluster

Location: Determines data center location (choose based on latency requirements)

  1. Resource Group Creation az group create
    --name $MY_RESOURCE_GROUP_NAME
    --location $LOCATION Purpose:

Creates a logical container for all deployment resources

Enables easier resource management and billing tracking

Allows for bulk operations and access control

  1. AKS Cluster Creation az aks create
    --resource-group $MY_RESOURCE_GROUP_NAME
    --name $MY_AKS_CLUSTER_NAME
    --node-count 1
    --generate-ssh-keys
    --network-plugin azure
    --network-policy azure Key Configuration Explained:

node-count: Initial number of nodes (start small, scale as needed)

generate-ssh-keys: Automatic SSH key generation for node access

network-plugin: Azure CNI for advanced networking features

network-policy: Enables network policy enforcement

  1. Node Pool Configuration System Node Pool az aks nodepool add
    --resource-group $MY_RESOURCE_GROUP_NAME
    --cluster-name $MY_AKS_CLUSTER_NAME
    --name system
    --node-count 3
    --node-vm-size D2s_v3 Why these specifications?

node-count: 3: Provides high availability for system components

D2s_v3: Balanced CPU/memory for system services

Dedicated pool for system components ensures stability

GPU Node Pool az aks nodepool add
--resource-group $MY_RESOURCE_GROUP_NAME
--cluster-name $MY_AKS_CLUSTER_NAME
--name gpunp
--node-count 1
--node-vm-size Standard_NC4as_T4_v3
--node-taints sku=gpu:NoSchedule
--enable-cluster-autoscaler
--min-count 1
--max-count 3 Configuration Details:

Standard_NC4as_T4_v3: T4 GPU for optimal LLM inference

node-taints: Ensures only GPU workloads run on these expensive nodes

enable-cluster-autoscaler: Automatic scaling based on demand

min-count/max-count: Scaling boundaries for cost control

  1. NVIDIA Device Plugin Installation apiVersion: apps/v1 kind: DaemonSet metadata: name: nvidia-device-plugin-daemonset namespace: kube-system spec: selector: matchLabels: name: nvidia-device-plugin-ds template: metadata: labels: name: nvidia-device-plugin-ds spec: tolerations:
    • key: "sku" operator: "Equal" value: "gpu" effect: "NoSchedule" priorityClassName: "system-node-critical" containers:
    • image: nvcr.io/nvidia/k8s-device-plugin:v0.14.0 name: nvidia-device-plugin-ctr securityContext: allowPrivilegeEscalation: false capabilities: drop: ["ALL"] volumeMounts:
      • name: device-plugin mountPath: /var/lib/kubelet/device-plugins

Why each component matters:

DaemonSet: Ensures plugin runs on all GPU nodes

tolerations: Allows running on GPU-tainted nodes

priorityClassName: Ensures plugin isn't evicted

securityContext: Implements security best practices

Model Deployment Configuration

  1. Persistent Volume Setup apiVersion: v1 kind: PersistentVolumeClaim metadata: name: mistral-7b namespace: default spec: accessModes:
  • ReadWriteOnce resources: requests: storage: 50Gi storageClassName: default Purpose of each setting:

50Gi storage: Accommodates model weights and cache

ReadWriteOnce: Single node access for data consistency

default storage class: Uses Azure managed disks

  1. Service Configuration apiVersion: v1 kind: Service metadata: name: mistral-7b namespace: default spec: ports:
  • name: http-mistral-7b port: 80 targetPort: 8000 selector: app: mistral-7b type: LoadBalancer Key components explained:

LoadBalancer type: Provides external access

Port mapping: Routes external port 80 to container port 8000

Selector: Links service to specific deployment

  1. Deployment Configuration apiVersion: apps/v1 kind: Deployment metadata: name: mistral-7b spec: replicas: 1 template: spec: containers:
    • name: mistral-7b image: vllm/vllm-openai:latest resources: limits: nvidia.com/gpu: 1 memory: 20G requests: nvidia.com/gpu: 1 memory: 6G volumeMounts:
      • mountPath: /root/.cache/huggingface name: cache-volume

Configuration details:

replicas: 1: Single instance per GPU

Resource limits: Prevents memory issues

Volume mounts: Persists model cache

Health probes: Ensures container health

Deployment Process

  1. Basic Deployment

Create namespace

kubectl create namespace llm-serving

Apply configurations

kubectl apply -f volume.yaml kubectl apply -f service.yaml kubectl apply -f deployment.yaml 2. Verify Deployment

Check pod status

kubectl get pods -n llm-serving kubectl describe pod

Verify service

kubectl get service mistral-7b Testing and Validation

  1. API Testing

Get external IP

export SERVICE_IP=$(kubectl get service mistral-7b -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

Test API

curl --location "http://$SERVICE_IP/v1/completions"
--header 'Content-Type: application/json'
--data '{ "model": "mistralai/Mistral-7B-Instruct-v0.1", "prompt": "Test prompt", "max_tokens": 50 }' 2. Performance Testing

Monitor GPU usage

kubectl exec -it -- nvidia-smi

Check response times

time curl -X POST "http://$SERVICE_IP/v1/completions" ... Production Considerations Security Implementation Network Security

Create network policy

kubectl apply -f network-policy.yaml

Enable Azure DDoS protection

az network ddos-protection enable ... API Security

Implement authentication

Set up rate limiting

Enable monitoring

Cost Optimization Resource Monitoring

Monitor costs

az cost management query ...

Scale based on usage

kubectl scale deployment mistral-7b --replicas=0 Cost Reduction Strategies

Use spot instances for non-critical workloads

Implement automatic scaling

Monitor and optimize resource usage

Maintenance Procedures

  1. Regular Updates

Update deployment

kubectl set image deployment/mistral-7b mistral-7b=vllm/vllm-openai:new-version

Verify update

kubectl rollout status deployment/mistral-7b 2. Backup and Recovery

Backup persistent volumes

velero backup create llm-backup

Restore if needed

velero restore create --from-backup llm-backup Troubleshooting Guide Common Issues and Solutions GPU Not Detected

Verify NVIDIA plugin installation

Check node labels and taints

Validate GPU driver installation

Memory Issues

Adjust resource limits

Monitor memory usage

Check for memory leaks

Network Issues

Verify network policy configuration

Check service endpoint availability

Validate load balancer configuration

Monitoring Setup

  1. Metrics Collection

Install Prometheus

helm install prometheus prometheus-community/prometheus

Configure Grafana

helm install grafana grafana/grafana 2. Log Management

Enable log analytics

az monitor log-analytics workspace create ...

Configure container insights

az aks enable-addons -a monitoring ... Additional Resources and References Documentation

Azure Kubernetes Service

vLLM Documentation

Hugging Face Models

Community Support

Azure Kubernetes Service GitHub

vLLM Discord community

Hugging Face forums

Community

Sign up or log in to comment