Datasets:

Languages:
English
ArXiv:
Tags:
code
License:
melisa Yash-Butala commited on
Commit
5e4bcb2
·
verified ·
1 Parent(s): b2693bc

Upload eval.py (#3)

Browse files

- Upload eval.py (18c211549eb4153515204726c46a88c1be03f051)


Co-authored-by: Yash Butala <[email protected]>

Files changed (1) hide show
  1. eval.py +167 -0
eval.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from math import sqrt
3
+ import re
4
+ from nltk.translate.bleu_score import sentence_bleu
5
+
6
+ # gold label file
7
+ gold_fn = 'test.json'
8
+
9
+ pred_fn = 'llava-v1.5-13b.json'
10
+ gold = json.load(open(gold_fn))
11
+ pred = json.load(open(pred_fn))
12
+
13
+ sequence_match = 0
14
+ action_score = 0
15
+ total_click_penalty = 0
16
+ total_press_penalty = 0
17
+ total_write_penalty = 0
18
+ ideal_score = 0
19
+ max_click_penalty = 0
20
+ max_press_penalty = 0
21
+ max_write_penalty = 0
22
+
23
+
24
+
25
+ def get_bounds(box: dict(), cx, cy):
26
+ for i in box:
27
+ tl = box[i]["top_left"]
28
+ br = box[i]["bottom_right"]
29
+ if (tl[0]+br[0])/2 == cx and (tl[1]+br[1])/2 == cy:
30
+ return (tl,br)
31
+
32
+ assert False
33
+
34
+
35
+ def dynamic_dirichlet_l2_penalty(tl, br, px, py):
36
+
37
+ len_x = br[0] - tl[0]
38
+ len_y = br[1] - tl[1]
39
+
40
+ cx = ( br[0] - tl[0] ) / 2
41
+ cy = ( br[1] - tl[1] ) / 2
42
+
43
+ dx = abs(cx - px) - (len_x * 0.5)
44
+ dy = abs(cy - py) - (len_y * 0.5)
45
+ dist = sqrt((dx * (dx > 0)) ** 2 + (dy * (dy > 0)) ** 2)
46
+
47
+ mu = sqrt( len_x ** 2 + len_y ** 2)
48
+
49
+ score = mu / (dist+mu)
50
+ penalty = 1 - score
51
+ return penalty
52
+
53
+ for idx in gold:
54
+
55
+ gold_script = open(gold[idx]['task']).read().strip().split('\n')[2:]
56
+ llm_script = pred[idx].strip().split()
57
+ llm_script = [x for x in llm_script if x.strip().startswith('pyautogui')]
58
+ #find extreme case values
59
+ sample_weight = (len(gold_script)-0.9)
60
+
61
+ ideal_score += sample_weight
62
+ for gold_line in gold_script:
63
+ action_type = gold_line.split("pyautogui.")[1].split("(")[0]
64
+ if action_type == 'click' or action_type == 'rightClick' or action_type == 'moveTo' or action_type == 'dragTo':
65
+ max_click_penalty += sample_weight/len(gold_script)
66
+ if action_type == 'press' or action_type == 'hotkey':
67
+ max_press_penalty += sample_weight/len(gold_script)
68
+ if action_type == 'write':
69
+ max_write_penalty += sample_weight/len(gold_script)
70
+
71
+ seq_match_flag = 1
72
+ click_penalty = 0
73
+ press_penalty = 0
74
+ write_penalty = 0
75
+
76
+ # if length doesn't seq match is 0
77
+ # llm_script = llm_script[:len(gold_script)]
78
+ if len(llm_script) != len(gold_script):
79
+ seq_match_flag = 0
80
+ if seq_match_flag == 1:
81
+ for i in range(len(gold_script)):
82
+ gold_line = gold_script[i].strip()
83
+ gold_action = gold_line.split('pyautogui.')[1].split('(')[0]
84
+ pred_line = llm_script[i]
85
+ if pred_line.startswith('pyautogui.') == False:
86
+ seq_match_flag = 0
87
+ break
88
+ pred_action = pred_line.split('pyautogui.')[1].split('(')[0]
89
+ if pred_action != gold_action:
90
+ seq_match_flag = 0
91
+ break
92
+
93
+ # find penalties for correct and wrong sequences
94
+ box_path = gold[idx]['box']
95
+ box_num = box_path.split("_")[-1].split(".json")[0]
96
+ box_path = "_".join(box_path.split("_")[:-1])+box_num+"_boxes.json"
97
+ box = json.load(open(box_path))
98
+
99
+ for i in range(len(gold_script)):
100
+ gold_line = gold_script[i].strip()
101
+ gold_action = gold_line.split('pyautogui.')[1].split('(')[0]
102
+ # just add the penalties
103
+ if seq_match_flag == 0:
104
+ if gold_action == 'click' or gold_action == 'rightClick' or gold_action == 'moveTo' or gold_action == 'dragTo':
105
+ click_penalty += 1/len(gold_script)
106
+ if gold_action == 'press' or gold_action == 'hotkey':
107
+ press_penalty += 1/len(gold_script)
108
+ if gold_action == 'write':
109
+ write_penalty += 1/len(gold_script)
110
+ continue
111
+ pred_line = llm_script[i]
112
+ pred_action = pred_line.split('pyautogui.')[1].split('(')[0]
113
+
114
+ # l2 penalty for click
115
+
116
+ if gold_action == 'click' or gold == 'rightClick':
117
+ # get original box bounds
118
+ gold_cx = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[0]
119
+ gold_cy = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[1].split(')')[0]
120
+ tl, br = get_bounds(box, float(gold_cx), float(gold_cy))
121
+
122
+ # get predicted point
123
+ pred_cx = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[0]
124
+ pred_cy = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[1].split(')')[0]
125
+
126
+ click_penalty += (1.0/len(gold_script)) * dynamic_dirichlet_l2_penalty(tl, br, float(pred_cx), float(pred_cy))
127
+
128
+ # penalty for press
129
+ if gold_action == 'press':
130
+ gold_key = gold_line.split("\"")[1]
131
+ pred_key = (re.split("\"|'", pred_line))[1]
132
+ if gold_key.strip() != pred_key.strip():
133
+ press_penalty += 1/len(gold_script)
134
+
135
+ # penalty for hotkey
136
+ if gold_action == 'hotkey':
137
+ gold_keys = gold_line.split("(")[1].split(")")[0].split(",")
138
+ pred_keys = pred_line.split("(")[1].split(")")[0].split(",")
139
+
140
+ gold_key_set = set([x[1:-1] for x in gold_keys if len(x)>2])
141
+ pred_key_set = set([x[1:-1] for x in pred_keys if len(x)>2])
142
+ if gold_key_set != pred_key_set:
143
+ press_penalty += 1/len(gold_script)
144
+
145
+
146
+ if gold_action == 'write':
147
+ reference = [gold_line.split("\"")[1]]
148
+ candidate = re.split("\"|'", pred_line)[1]
149
+ write_penalty += (1-sentence_bleu(reference, candidate, weights=(0.5, 0.5))) / len(gold_script)
150
+
151
+ sequence_match += (seq_match_flag) * sample_weight
152
+ action_score += (max(seq_match_flag - click_penalty - press_penalty - write_penalty, 0)) * sample_weight
153
+ if seq_match_flag:
154
+ total_click_penalty += click_penalty * sample_weight
155
+ total_press_penalty += press_penalty * sample_weight
156
+ total_write_penalty += write_penalty * sample_weight
157
+
158
+
159
+ print(ideal_score)
160
+ print(f"Sequence match: {sequence_match/ideal_score}")
161
+ print(f"Action match: {action_score/ideal_score}")
162
+
163
+
164
+ print(total_click_penalty/ideal_score)
165
+ print(total_press_penalty/ideal_score)
166
+ print(total_write_penalty/ideal_score)
167
+