multi_news / multi_news.py
albertvillanova's picture
Host multi_news data on the Hub instead of Google Drive (#4585)
713d981
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Multi-News dataset."""
import datasets
_HOMEPAGE = "https://github.com/Alex-Fabbri/Multi-News"
_LICENSE = "For non-commercial research and educational purposes only"
_CITATION = """
@misc{alex2019multinews,
title={Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model},
author={Alexander R. Fabbri and Irene Li and Tianwei She and Suyi Li and Dragomir R. Radev},
year={2019},
eprint={1906.01749},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """
Multi-News, consists of news articles and human-written summaries
of these articles from the site newser.com.
Each summary is professionally written by editors and
includes links to the original articles cited.
There are two features:
- document: text of news articles seperated by special token "|||||".
- summary: news summary.
"""
_REPO = "https://huggingface.co/datasets/multi_news/resolve/main/data"
_URLs = {
"train": [
f"{_REPO}/train.src.cleaned",
f"{_REPO}/train.tgt",
],
"val": [
f"{_REPO}/val.src.cleaned",
f"{_REPO}/val.tgt",
],
"test": [
f"{_REPO}/test.src.cleaned",
f"{_REPO}/test.tgt",
],
}
_DOCUMENT = "document"
_SUMMARY = "summary"
class MultiNews(datasets.GeneratorBasedBuilder):
"""Multi-News dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
supervised_keys=(_DOCUMENT, _SUMMARY),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
files = dl_manager.download(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"src_file": files["train"][0], "tgt_file": files["train"][1]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"src_file": files["val"][0], "tgt_file": files["val"][1]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"src_file": files["test"][0], "tgt_file": files["test"][1]},
),
]
def _generate_examples(self, src_file, tgt_file):
"""Yields examples."""
with open(src_file, encoding="utf-8") as src_f, open(tgt_file, encoding="utf-8") as tgt_f:
for i, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)):
yield i, {
# In original file, each line has one example and natural newline
# tokens "\n" are being replaced with "NEWLINE_CHAR". Here restore
# the natural newline token to avoid special vocab "NEWLINE_CHAR".
_DOCUMENT: src_line.strip().replace("NEWLINE_CHAR", "\n"),
_SUMMARY: tgt_line.strip(),
}