import os from fastapi import FastAPI import subprocess import wandb from huggingface_hub import HfApi TOKEN = os.environ.get("DATACOMP_TOKEN") API = HfApi(token=TOKEN) wandb_api_key = os.environ.get('wandb_api_key') wandb.login(key=wandb_api_key) random_num = 90.0 subset = 'frac-1over64' experiment_name = f"ImageNetTraining{random_num}-{subset}" experiment_repo = f"datacomp/{experiment_name}" app = FastAPI() @app.get("/") def start_train(): os.system("echo '#### pwd'") os.system("pwd") os.system("echo '#### ls'") os.system("ls") # Create a place to put the output. os.system("echo 'Creating results output repository in case it does not exist yet...'") try: API.create_repo(repo_id=f"{experiment_repo}", repo_type="dataset",) os.system(f"echo 'Created results output repository {experiment_repo}'") except: os.system("echo 'Already there; skipping.'") pass os.system("echo 'Beginning processing.'") # Handles CUDA OOM errors. os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") os.system("echo 'Okay, trying training.'") os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --experiment ImageNetTraining{random_num}-{subset} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") os.system("echo 'Done'.") os.system("ls") # Upload output to repository os.system("echo 'trying to upload...'") API.upload_folder(folder_path="/app", repo_id=f"{experiment_repo}", repo_type="dataset",) API.pause_space(experiment_repo) return {"Completed": "!"}