text
stringlengths
15
42.1k
source
stringclasses
469 values
file_type
stringclasses
1 value
id
stringlengths
3
6
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_0
[[open-in-colab]] Before you can train a model on a dataset, it needs to be preprocessed into the expected model input format. Whether your data is text, images, or audio, it needs to be converted and assembled into batches of tensors. 🤗 Transformers provides a set of preprocessing classes to help prepare your data for the model. In this tutorial, you'll learn that for: * Text, use a [Tokenizer](./main_classes/tokenizer) to convert text into a sequence of tokens, create a numerical representation of the tokens, and assemble them into tensors. * Speech and audio, use a [Feature extractor](./main_classes/feature_extractor) to extract sequential features from audio waveforms and convert them into tensors. * Image inputs use a [ImageProcessor](./main_classes/image_processor) to convert images into tensors. * Multimodal inputs, use a [Processor](./main_classes/processors) to combine a tokenizer and a feature extractor or image processor. <Tip> `AutoProcessor` **always** works and automatically chooses the correct class for the model you're using, whether you're using a tokenizer, image processor, feature extractor or processor. </Tip> Before you begin, install 🤗 Datasets so you can load some datasets to experiment with: ```bash pip install datasets ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_1
<Youtube id="Yffk5aydLzg"/> The main tool for preprocessing textual data is a [tokenizer](main_classes/tokenizer). A tokenizer splits text into *tokens* according to a set of rules. The tokens are converted into numbers and then tensors, which become the model inputs. Any additional inputs required by the model are added by the tokenizer. <Tip> If you plan on using a pretrained model, it's important to use the associated pretrained tokenizer. This ensures the text is split the same way as the pretraining corpus, and uses the same corresponding tokens-to-index (usually referred to as the *vocab*) during pretraining. </Tip> Get started by loading a pretrained tokenizer with the [`AutoTokenizer.from_pretrained`] method. This downloads the *vocab* a model was pretrained with: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") ``` Then pass your text to the tokenizer: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` The tokenizer returns a dictionary with three important items: * [input_ids](glossary#input-ids) are the indices corresponding to each token in the sentence. * [attention_mask](glossary#attention-mask) indicates whether a token should be attended to or not. * [token_type_ids](glossary#token-type-ids) identifies which sequence a token belongs to when there is more than one sequence. Return your input by decoding the `input_ids`: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` As you can see, the tokenizer added two special tokens - `CLS` and `SEP` (classifier and separator) - to the sentence. Not all models need special tokens, but if they do, the tokenizer automatically adds them for you. If there are several sentences you want to preprocess, pass them as a list to the tokenizer: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_2
Sentences aren't always the same length which can be an issue because tensors, the model inputs, need to have a uniform shape. Padding is a strategy for ensuring tensors are rectangular by adding a special *padding token* to shorter sentences. Set the `padding` parameter to `True` to pad the shorter sequences in the batch to match the longest sequence: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` The first and third sentences are now padded with `0`'s because they are shorter.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_3
On the other end of the spectrum, sometimes a sequence may be too long for a model to handle. In this case, you'll need to truncate the sequence to a shorter length. Set the `truncation` parameter to `True` to truncate a sequence to the maximum length accepted by the model: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` <Tip> Check out the [Padding and truncation](./pad_truncation) concept guide to learn more different padding and truncation arguments. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_4
Finally, you want the tokenizer to return the actual tensors that get fed to the model. Set the `return_tensors` parameter to either `pt` for PyTorch, or `tf` for TensorFlow: <frameworkcontent> <pt> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])} ``` </pt> <tf> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>} ``` </tf> </frameworkcontent> <Tip> Different pipelines support tokenizer arguments in their `__call__()` differently. `text-2-text-generation` pipelines support (i.e. pass on) only `truncation`. `text-generation` pipelines support `max_length`, `truncation`, `padding` and `add_special_tokens`. In `fill-mask` pipelines, tokenizer arguments can be passed in the `tokenizer_kwargs` argument (dictionary). </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_5
For audio tasks, you'll need a [feature extractor](main_classes/feature_extractor) to prepare your dataset for the model. The feature extractor is designed to extract features from raw audio data, and convert them into tensors. Load the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset (see the 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) for more details on how to load a dataset) to see how you can use a feature extractor with audio datasets: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` Access the first element of the `audio` column to take a look at the input. Calling the `audio` column automatically loads and resamples the audio file: ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` This returns three items: * `array` is the speech signal loaded - and potentially resampled - as a 1D array. * `path` points to the location of the audio file. * `sampling_rate` refers to how many data points in the speech signal are measured per second. For this tutorial, you'll use the [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) model. Take a look at the model card, and you'll learn Wav2Vec2 is pretrained on 16kHz sampled speech audio. It is important your audio data's sampling rate matches the sampling rate of the dataset used to pretrain the model. If your data's sampling rate isn't the same, then you need to resample your data. 1. Use 🤗 Datasets' [`~datasets.Dataset.cast_column`] method to upsample the sampling rate to 16kHz: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. Call the `audio` column again to resample the audio file: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` Next, load a feature extractor to normalize and pad the input. When padding textual data, a `0` is added for shorter sequences. The same idea applies to audio data. The feature extractor adds a `0` - interpreted as silence - to `array`. Load the feature extractor with [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` Pass the audio `array` to the feature extractor. We also recommend adding the `sampling_rate` argument in the feature extractor in order to better debug any silent errors that may occur. ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` Just like the tokenizer, you can apply padding or truncation to handle variable sequences in a batch. Take a look at the sequence length of these two audio samples: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` Create a function to preprocess the dataset so the audio samples are the same lengths. Specify a maximum sample length, and the feature extractor will either pad or truncate the sequences to match it: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` Apply the `preprocess_function` to the first few examples in the dataset: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` The sample lengths are now the same and match the specified maximum length. You can pass your processed dataset to the model now! ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_6
For computer vision tasks, you'll need an [image processor](main_classes/image_processor) to prepare your dataset for the model. Image preprocessing consists of several steps that convert images into the input expected by the model. These steps include but are not limited to resizing, normalizing, color channel correction, and converting images to tensors. <Tip> Image preprocessing often follows some form of image augmentation. Both image preprocessing and image augmentation transform image data, but they serve different purposes: * Image augmentation alters images in a way that can help prevent overfitting and increase the robustness of the model. You can get creative in how you augment your data - adjust brightness and colors, crop, rotate, resize, zoom, etc. However, be mindful not to change the meaning of the images with your augmentations. * Image preprocessing guarantees that the images match the model’s expected input format. When fine-tuning a computer vision model, images must be preprocessed exactly as when the model was initially trained. You can use any library you like for image augmentation. For image preprocessing, use the `ImageProcessor` associated with the model. </Tip> Load the [food101](https://huggingface.co/datasets/food101) dataset (see the 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) for more details on how to load a dataset) to see how you can use an image processor with computer vision datasets: <Tip> Use 🤗 Datasets `split` parameter to only load a small sample from the training split since the dataset is quite large! </Tip> ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` Next, take a look at the image with 🤗 Datasets [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image) feature: ```py >>> dataset[0]["image"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/> </div> Load the image processor with [`AutoImageProcessor.from_pretrained`]: ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") ``` First, let's add some image augmentation. You can use any library you prefer, but in this tutorial, we'll use torchvision's [`transforms`](https://pytorch.org/vision/stable/transforms.html) module. If you're interested in using another data augmentation library, learn how in the [Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) or [Kornia notebooks](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb). 1. Here we use [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) to chain together a couple of transforms - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) and [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html). Note that for resizing, we can get the image size requirements from the `image_processor`. For some models, an exact height and width are expected, for others only the `shortest_edge` is defined. ```py >>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose >>> size = ( ... image_processor.size["shortest_edge"] ... if "shortest_edge" in image_processor.size ... else (image_processor.size["height"], image_processor.size["width"]) ... ) >>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)]) ``` 2. The model accepts [`pixel_values`](model_doc/vision-encoder-decoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) as its input. `ImageProcessor` can take care of normalizing the images, and generating appropriate tensors. Create a function that combines image augmentation and image preprocessing for a batch of images and generates `pixel_values`: ```py >>> def transforms(examples): ... images = [_transforms(img.convert("RGB")) for img in examples["image"]] ... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"] ... return examples ``` <Tip> In the example above we set `do_resize=False` because we have already resized the images in the image augmentation transformation, and leveraged the `size` attribute from the appropriate `image_processor`. If you do not resize images during image augmentation, leave this parameter out. By default, `ImageProcessor` will handle the resizing. If you wish to normalize images as a part of the augmentation transformation, use the `image_processor.image_mean`, and `image_processor.image_std` values. </Tip> 3. Then use 🤗 Datasets[`~datasets.Dataset.set_transform`] to apply the transforms on the fly: ```py >>> dataset.set_transform(transforms) ``` 4. Now when you access the image, you'll notice the image processor has added `pixel_values`. You can pass your processed dataset to the model now! ```py >>> dataset[0].keys() ``` Here is what the image looks like after the transforms are applied. The image has been randomly cropped and it's color properties are different. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/> </div> <Tip> For tasks like object detection, semantic segmentation, instance segmentation, and panoptic segmentation, `ImageProcessor` offers post processing methods. These methods convert model's raw outputs into meaningful predictions such as bounding boxes, or segmentation maps. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_7
In some cases, for instance, when fine-tuning [DETR](./model_doc/detr), the model applies scale augmentation at training time. This may cause images to be different sizes in a batch. You can use [`DetrImageProcessor.pad`] from [`DetrImageProcessor`] and define a custom `collate_fn` to batch images together. ```py >>> def collate_fn(batch): ... pixel_values = [item["pixel_values"] for item in batch] ... encoding = image_processor.pad(pixel_values, return_tensors="pt") ... labels = [item["labels"] for item in batch] ... batch = {} ... batch["pixel_values"] = encoding["pixel_values"] ... batch["pixel_mask"] = encoding["pixel_mask"] ... batch["labels"] = labels ... return batch ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_8
For tasks involving multimodal inputs, you'll need a [processor](main_classes/processors) to prepare your dataset for the model. A processor couples together two processing objects such as tokenizer and feature extractor. Load the [LJ Speech](https://huggingface.co/datasets/lj_speech) dataset (see the 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) for more details on how to load a dataset) to see how you can use a processor for automatic speech recognition (ASR): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` For ASR, you're mainly focused on `audio` and `text` so you can remove the other columns: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` Now take a look at the `audio` and `text` columns: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` Remember you should always [resample](preprocessing#audio) your audio dataset's sampling rate to match the sampling rate of the dataset used to pretrain a model! ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` Load a processor with [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. Create a function to process the audio data contained in `array` to `input_values`, and tokenize `text` to `labels`. These are the inputs to the model: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. Apply the `prepare_dataset` function to a sample: ```py >>> prepare_dataset(lj_speech[0]) ``` The processor has now added `input_values` and `labels`, and the sampling rate has also been correctly downsampled to 16kHz. You can pass your processed dataset to the model now!
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/preprocessing.md
.md
0_9
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/sagemaker.md
.md
1_0
The documentation has been moved to [hf.co/docs/sagemaker](https://huggingface.co/docs/sagemaker). This page will be removed in `transformers` 5.0.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/sagemaker.md
.md
1_1
- [Train Hugging Face models on Amazon SageMaker with the SageMaker Python SDK](https://huggingface.co/docs/sagemaker/train) - [Deploy Hugging Face models to Amazon SageMaker with the SageMaker Python SDK](https://huggingface.co/docs/sagemaker/inference)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/sagemaker.md
.md
1_2
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_0
The last two tutorials showed how you can fine-tune a model with PyTorch, Keras, and 🤗 Accelerate for distributed setups. The next step is to share your model with the community! At Hugging Face, we believe in openly sharing knowledge and resources to democratize artificial intelligence for everyone. We encourage you to consider sharing your model with the community to help others save time and resources. In this tutorial, you will learn two methods for sharing a trained or fine-tuned model on the [Model Hub](https://huggingface.co/models): - Programmatically push your files to the Hub. - Drag-and-drop your files to the Hub with the web interface. <iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <Tip> To share a model with the community, you need an account on [huggingface.co](https://huggingface.co/join). You can also join an existing organization or create a new one. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_1
Each repository on the Model Hub behaves like a typical GitHub repository. Our repositories offer versioning, commit history, and the ability to visualize differences. The Model Hub's built-in versioning is based on git and [git-lfs](https://git-lfs.github.com/). In other words, you can treat one model as one repository, enabling greater access control and scalability. Version control allows *revisions*, a method for pinning a specific version of a model with a commit hash, tag or branch. As a result, you can load a specific model version with the `revision` parameter: ```py >>> model = AutoModel.from_pretrained( ... "julien-c/EsperBERTo-small", revision="4c77982" # tag name, or branch name, or commit hash ... ) ``` Files are also easily edited in a repository, and you can view the commit history as well as the differences: ![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_2
Before sharing a model to the Hub, you will need your Hugging Face credentials. If you have access to a terminal, run the following command in the virtual environment where 🤗 Transformers is installed. This will store your access token in your Hugging Face cache folder (`~/.cache/` by default): ```bash huggingface-cli login ``` If you are using a notebook like Jupyter or Colaboratory, make sure you have the [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) library installed. This library allows you to programmatically interact with the Hub. ```bash pip install huggingface_hub ``` Then use `notebook_login` to sign-in to the Hub, and follow the link [here](https://huggingface.co/settings/token) to generate a token to login with: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_3
To ensure your model can be used by someone working with a different framework, we recommend you convert and upload your model with both PyTorch and TensorFlow checkpoints. While users are still able to load your model from a different framework if you skip this step, it will be slower because 🤗 Transformers will need to convert the checkpoint on-the-fly. Converting a checkpoint for another framework is easy. Make sure you have PyTorch and TensorFlow installed (see [here](installation) for installation instructions), and then find the specific model for your task in the other framework. <frameworkcontent> <pt> Specify `from_tf=True` to convert a checkpoint from TensorFlow to PyTorch: ```py >>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) >>> pt_model.save_pretrained("path/to/awesome-name-you-picked") ``` </pt> <tf> Specify `from_pt=True` to convert a checkpoint from PyTorch to TensorFlow: ```py >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) ``` Then you can save your new TensorFlow model with its new checkpoint: ```py >>> tf_model.save_pretrained("path/to/awesome-name-you-picked") ``` </tf> <jax> If a model is available in Flax, you can also convert a checkpoint from PyTorch to Flax: ```py >>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( ... "path/to/awesome-name-you-picked", from_pt=True ... ) ``` </jax> </frameworkcontent>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_4
<frameworkcontent> <pt> <Youtube id="Z1-XMy-GNLQ"/> Sharing a model to the Hub is as simple as adding an extra parameter or callback. Remember from the [fine-tuning tutorial](training), the [`TrainingArguments`] class is where you specify hyperparameters and additional training options. One of these training options includes the ability to push a model directly to the Hub. Set `push_to_hub=True` in your [`TrainingArguments`]: ```py >>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True) ``` Pass your training arguments as usual to [`Trainer`]: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` After you fine-tune your model, call [`~transformers.Trainer.push_to_hub`] on [`Trainer`] to push the trained model to the Hub. 🤗 Transformers will even automatically add training hyperparameters, training results and framework versions to your model card! ```py >>> trainer.push_to_hub() ``` </pt> <tf> Share a model to the Hub with [`PushToHubCallback`]. In the [`PushToHubCallback`] function, add: - An output directory for your model. - A tokenizer. - The `hub_model_id`, which is your Hub username and model name. ```py >>> from transformers import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model" ... ) ``` Add the callback to [`fit`](https://keras.io/api/models/model_training_apis/), and 🤗 Transformers will push the trained model to the Hub: ```py >>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) ``` </tf> </frameworkcontent>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_5
You can also call `push_to_hub` directly on your model to upload it to the Hub. Specify your model name in `push_to_hub`: ```py >>> pt_model.push_to_hub("my-awesome-model") ``` This creates a repository under your username with the model name `my-awesome-model`. Users can now load your model with the `from_pretrained` function: ```py >>> from transformers import AutoModel >>> model = AutoModel.from_pretrained("your_username/my-awesome-model") ``` If you belong to an organization and want to push your model under the organization name instead, just add it to the `repo_id`: ```py >>> pt_model.push_to_hub("my-awesome-org/my-awesome-model") ``` The `push_to_hub` function can also be used to add other files to a model repository. For example, add a tokenizer to a model repository: ```py >>> tokenizer.push_to_hub("my-awesome-model") ``` Or perhaps you'd like to add the TensorFlow version of your fine-tuned PyTorch model: ```py >>> tf_model.push_to_hub("my-awesome-model") ``` Now when you navigate to your Hugging Face profile, you should see your newly created model repository. Clicking on the **Files** tab will display all the files you've uploaded to the repository. For more details on how to create and upload files to a repository, refer to the Hub documentation [here](https://huggingface.co/docs/hub/how-to-upstream).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_6
Users who prefer a no-code approach are able to upload a model through the Hub's web interface. Visit [huggingface.co/new](https://huggingface.co/new) to create a new repository: ![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) From here, add some information about your model: - Select the **owner** of the repository. This can be yourself or any of the organizations you belong to. - Pick a name for your model, which will also be the repository name. - Choose whether your model is public or private. - Specify the license usage for your model. Now click on the **Files** tab and click on the **Add file** button to upload a new file to your repository. Then drag-and-drop a file to upload and add a commit message. ![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_7
To make sure users understand your model's capabilities, limitations, potential biases and ethical considerations, please add a model card to your repository. The model card is defined in the `README.md` file. You can add a model card by: * Manually creating and uploading a `README.md` file. * Clicking on the **Edit model card** button in your model repository. Take a look at the DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) for a good example of the type of information a model card should include. For more details about other options you can control in the `README.md` file such as a model's carbon footprint or widget examples, refer to the documentation [here](https://huggingface.co/docs/hub/models-cards).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/model_sharing.md
.md
2_8
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_0
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 🤗 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs. <Tip> The majority of the optimizations described here also apply to multi-GPU setups! </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_1
<Tip> FlashAttention-2 is experimental and may change considerably in future versions. </Tip> [FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by: 1. additionally parallelizing the attention computation over sequence length 2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them FlashAttention-2 is currently supported for the following architectures: * [Aria](https://huggingface.co/docs/transformers/model_doc/aria#transformers.AriaForConditionalGeneration) * [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel) * [Bamba](https://huggingface.co/docs/transformers/model_doc/bamba#transformers.BambaModel) * [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel) * [Chameleon](https://huggingface.co/docs/transformers/model_doc/chameleon#transformers.Chameleon) * [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPModel) * [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel) * [Cohere2](https://huggingface.co/docs/transformers/model_doc/cohere2#transformers.Cohere2Model) * [GLM](https://huggingface.co/docs/transformers/model_doc/glm#transformers.GLMModel) * [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel) * [DiffLlama](https://huggingface.co/docs/transformers/model_doc/diffllama#transformers.DiffLlamaModel) * [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel) * [Emu3](https://huggingface.co/docs/transformers/model_doc/emu3) * [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel) * [Gemma2](https://huggingface.co/docs/transformers/model_doc/gemma2#transformers.Gemma2Model) * [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2) * [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel) * [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel) * [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel) * [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel) * [Granite](https://huggingface.co/docs/transformers/model_doc/granite#transformers.GraniteModel) * [GraniteMoe](https://huggingface.co/docs/transformers/model_doc/granitemoe#transformers.GraniteMoeModel) * [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model) * [Idefics3](https://huggingface.co/docs/transformers/model_doc/idefics3#transformers.Idefics3Model) * [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel) * [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel) * [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel) * [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel) * [Llava](https://huggingface.co/docs/transformers/model_doc/llava) * [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next) * [Llava-NeXT-Video](https://huggingface.co/docs/transformers/model_doc/llava_next_video) * [LLaVA-Onevision](https://huggingface.co/docs/transformers/model_doc/llava_onevision) * [Moonshine](https://huggingface.co/docs/transformers/model_doc/moonshine#transformers.MoonshineModel) * [Mimi](https://huggingface.co/docs/transformers/model_doc/mimi) * [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava) * [VideoLlava](https://huggingface.co/docs/transformers/model_doc/video_llava) * [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100) * [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel) * [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel) * [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel) * [ModernBert](https://huggingface.co/docs/transformers/model_doc/modernbert#transformers.ModernBert) * [Moshi](https://huggingface.co/docs/transformers/model_doc/moshi#transformers.MoshiModel) * [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel) * [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel) * [Nemotron](https://huggingface.co/docs/transformers/model_doc/nemotron) * [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb) * [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel) * [OLMo2](https://huggingface.co/docs/transformers/model_doc/olmo2#transformers.Olmo2Model) * [OLMoE](https://huggingface.co/docs/transformers/model_doc/olmoe#transformers.OlmoeModel) * [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel) * [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration) * [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel) * [Phi3](https://huggingface.co/docs/transformers/model_doc/phi3#transformers.Phi3Model) * [PhiMoE](https://huggingface.co/docs/transformers/model_doc/phimoe#transformers.PhimoeModel) * [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel) * [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model) * [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model) * [Qwen2Audio](https://huggingface.co/docs/transformers/model_doc/qwen2_audio#transformers.Qwen2AudioEncoder) * [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel) * [Qwen2VL](https://huggingface.co/docs/transformers/model_doc/qwen2_vl#transformers.Qwen2VLModel) * [RAG](https://huggingface.co/docs/transformers/model_doc/rag#transformers.RagModel) * [SpeechEncoderDecoder](https://huggingface.co/docs/transformers/model_doc/speech_encoder_decoder#transformers.SpeechEncoderDecoderModel) * [VisionEncoderDecoder](https://huggingface.co/docs/transformers/model_doc/vision_encoder_decoder#transformers.VisionEncoderDecoderModel) * [VisionTextDualEncoder](https://huggingface.co/docs/transformers/model_doc/vision_text_dual_encoder#transformers.VisionTextDualEncoderModel) * [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel) * [Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model) * [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel) * [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel) * [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel) * [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) * [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel) * [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel) You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request. Before you begin, make sure you have FlashAttention-2 installed. <hfoptions id="install"> <hfoption id="NVIDIA"> ```bash pip install flash-attn --no-build-isolation ``` We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types! </hfoption> <hfoption id="AMD"> FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210**, **Instinct MI250** and **Instinct MI300**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs. </hfoption> </hfoptions> To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM model_id = "tiiuae/falcon-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` <Tip> FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2. <br> You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`. </Tip> FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization: ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM model_id = "tiiuae/falcon-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) # load in 8bit model = AutoModelForCausalLM.from_pretrained( model_id, load_in_8bit=True, attn_implementation="flash_attention_2", ) # load in 4bit model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True, attn_implementation="flash_attention_2", ) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_2
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens. To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length). For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png"> </div> For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png"> </div> For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens): <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png"> </div> But for larger sequence lengths, you can expect even more speedup benefits: <Tip> FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details. </Tip> <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png"> </div>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_3
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available. You may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used. For now, Transformers supports SDPA inference and training for the following architectures: * [Albert](https://huggingface.co/docs/transformers/model_doc/albert#transformers.AlbertModel) * [Aria](https://huggingface.co/docs/transformers/model_doc/aria#transformers.AriaForConditionalGeneration) * [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTModel) * [Bamba](https://huggingface.co/docs/transformers/model_doc/bamba#transformers.BambaModel) * [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel) * [Beit](https://huggingface.co/docs/transformers/model_doc/beit#transformers.BeitModel) * [Bert](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel) * [BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt#transformers.BioGptModel) * [CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert#transformers.CamembertModel) * [Chameleon](https://huggingface.co/docs/transformers/model_doc/chameleon#transformers.Chameleon) * [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPModel) * [GLM](https://huggingface.co/docs/transformers/model_doc/glm#transformers.GLMModel) * [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel) * [Cohere2](https://huggingface.co/docs/transformers/model_doc/cohere2#transformers.Cohere2Model) * [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel) * [data2vec_vision](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecVisionModel) * [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel) * [DeiT](https://huggingface.co/docs/transformers/model_doc/deit#transformers.DeiTModel) * [DiffLlama](https://huggingface.co/docs/transformers/model_doc/diffllama#transformers.DiffLlamaModel) * [Dinov2](https://huggingface.co/docs/transformers/en/model_doc/dinov2) * [Dinov2_with_registers](https://huggingface.co/docs/transformers/en/model_doc/dinov2) * [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel) * [Dpr](https://huggingface.co/docs/transformers/model_doc/dpr#transformers.DprReader) * [EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder_decoder#transformers.EncoderDecoderModel) * [Emu3](https://huggingface.co/docs/transformers/model_doc/emu3) * [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel) * [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel) * [Gemma2](https://huggingface.co/docs/transformers/model_doc/gemma2#transformers.Gemma2Model) * [Granite](https://huggingface.co/docs/transformers/model_doc/granite#transformers.GraniteModel) * [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2) * [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel) * [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel) * [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel) * [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel) * [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model) * [Idefics3](https://huggingface.co/docs/transformers/model_doc/idefics3#transformers.Idefics3Model) * [I-JEPA](https://huggingface.co/docs/transformers/model_doc/ijepa#transformers.IJepaModel) * [GraniteMoe](https://huggingface.co/docs/transformers/model_doc/granitemoe#transformers.GraniteMoeModel) * [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel) * [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel) * [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel) * [Llava](https://huggingface.co/docs/transformers/model_doc/llava) * [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next) * [Llava-NeXT-Video](https://huggingface.co/docs/transformers/model_doc/llava_next_video) * [LLaVA-Onevision](https://huggingface.co/docs/transformers/model_doc/llava_onevision) * [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100#transformers.M2M100Model) * [Moonshine](https://huggingface.co/docs/transformers/model_doc/moonshine#transformers.MoonshineModel) * [Mimi](https://huggingface.co/docs/transformers/model_doc/mimi) * [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel) * [Mllama](https://huggingface.co/docs/transformers/model_doc/mllama#transformers.MllamaForConditionalGeneration) * [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel) * [ModernBert](https://huggingface.co/docs/transformers/model_doc/modernbert#transformers.ModernBert) * [Moshi](https://huggingface.co/docs/transformers/model_doc/moshi#transformers.MoshiModel) * [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel) * [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel) * [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb) * [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel) * [OLMo2](https://huggingface.co/docs/transformers/model_doc/olmo2#transformers.Olmo2Model) * [OLMoE](https://huggingface.co/docs/transformers/model_doc/olmoe#transformers.OlmoeModel) * [OPT](https://huggingface.co/docs/transformers/en/model_doc/opt) * [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration) * [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel) * [Phi3](https://huggingface.co/docs/transformers/model_doc/phi3#transformers.Phi3Model) * [PhiMoE](https://huggingface.co/docs/transformers/model_doc/phimoe#transformers.PhimoeModel) * [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel) * [mBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel) * [Moonshine](https://huggingface.co/docs/transformers/model_doc/moonshine#transformers.MoonshineModel) * [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel) * [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel) * [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel) * [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model) * [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model) * [Qwen2Audio](https://huggingface.co/docs/transformers/model_doc/qwen2_audio#transformers.Qwen2AudioEncoder) * [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel) * [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaModel) * [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel) * [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) * [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel) * [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model) * [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel) * [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel) * [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaModel) * [Qwen2VL](https://huggingface.co/docs/transformers/model_doc/qwen2_vl#transformers.Qwen2VLModel) * [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel) * [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel) * [Nemotron](https://huggingface.co/docs/transformers/model_doc/nemotron) * [SpeechEncoderDecoder](https://huggingface.co/docs/transformers/model_doc/speech_encoder_decoder#transformers.SpeechEncoderDecoderModel) * [VideoLlava](https://huggingface.co/docs/transformers/model_doc/video_llava) * [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava) * [VisionEncoderDecoder](https://huggingface.co/docs/transformers/model_doc/vision_encoder_decoder#transformers.VisionEncoderDecoderModel) * [ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.ViTModel) * [ViTHybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid#transformers.ViTHybridModel) * [ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae#transformers.ViTMAEModel) * [ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn#transformers.ViTMSNModel) * [VisionTextDualEncoder](https://huggingface.co/docs/transformers/model_doc/vision_text_dual_encoder#transformers.VisionTextDualEncoderModel) * [VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae#transformers.VideoMAEModell) * [ViViT](https://huggingface.co/docs/transformers/model_doc/vivit#transformers.VivitModel) * [wav2vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model) * [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel) * [XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaModel) * [XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl#transformers.XLMRobertaXLModel) * [YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos#transformers.YolosModel) <Tip> FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. The memory-efficient attention backend is able to handle `fp32` models. </Tip> <Tip> SDPA does not support certain sets of attention parameters, such as `head_mask` and `output_attentions=True`. In that case, you should see a warning message and we will fall back to the (slower) eager implementation. </Tip> By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.nn.attention.sdpa_kernel`](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) as a context manager: ```diff import torch + from torch.nn.attention import SDPBackend, sdpa_kernel from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda") input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") + with sdpa_kernel(SDPBackend.FLASH_ATTENTION): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention: ```bash RuntimeError: No available kernel. Aborting execution. # install PyTorch nightly pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118 ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_4
<Tip warning={true}> Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers. </Tip> <Tip> Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 🤗 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post. </Tip> BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are: 1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps 2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood. Before you start, make sure you have 🤗 Optimum [installed](https://huggingface.co/docs/optimum/installation). Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method: ```python model = model.to_bettertransformer() ``` You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling: ```py model = model.reverse_bettertransformer() model.save_pretrained("saved_model") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_5
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory. Make sure you have bitsandbytes and 🤗 Accelerate installed: ```bash # these versions support 8-bit and 4-bit pip install bitsandbytes>=0.39.0 accelerate>=0.20.0 # install Transformers pip install transformers ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_6
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 🤗 Accelerate to automatically and efficiently allocate the model given the available resources in the environment. ```py from transformers import AutoModelForCausalLM model_name = "bigscience/bloom-2b5" model_4bit = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", load_in_4bit=True) ``` To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU: ```py max_memory_mapping = {0: "600MB", 1: "1GB"} model_name = "bigscience/bloom-3b" model_4bit = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping ) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_7
<Tip> If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post. </Tip> To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 🤗 Accelerate to automatically and efficiently allocate the model given the available resources in the environment: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig model_name = "bigscience/bloom-2b5" model_8bit = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True)) ``` If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "bigscience/bloom-2b5" tokenizer = AutoTokenizer.from_pretrained(model_name) model_8bit = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", quantization_config=BitsAndBytesConfig(load_in_8bit=True)) prompt = "Hello, my llama is cute" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate(**inputs) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` To load a model in 8-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU: ```py max_memory_mapping = {0: "1GB", 1: "2GB"} model_name = "bigscience/bloom-3b" model_8bit = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping ) ``` <Tip> Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs! </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_8
<Tip> Learn more details about using ORT with 🤗 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example. </Tip> ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices. ORT is supported by 🤗 Optimum which can be used in 🤗 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format: ```py from optimum.onnxruntime import ORTModelForSequenceClassification ort_model = ORTModelForSequenceClassification.from_pretrained( "distilbert/distilbert-base-uncased-finetuned-sst-2-english", export=True, provider="CUDAExecutionProvider", ) ``` Now you're free to use the model for inference: ```py from optimum.pipelines import pipeline from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english") pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0") result = pipeline("Both the music and visual were astounding, not to mention the actors performance.") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_9
It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention: ```py import torch from torch.nn.attention import SDPBackend, sdpa_kernel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # load model in 4-bit quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype="auto", quantization_config=quantization_config) # enable BetterTransformer model = model.to_bettertransformer() input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") # enable FlashAttention with sdpa_kernel(SDPBackend.FLASH_ATTENTION): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_infer_gpu_one.md
.md
3_10
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_0
When training on a single CPU is too slow, we can use multiple CPUs. This guide focuses on PyTorch-based DDP enabling distributed CPU training efficiently on [bare metal](#usage-in-trainer) and [Kubernetes](#usage-with-kubernetes).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_1
[Intel® oneCCL](https://github.com/oneapi-src/oneCCL) (collective communications library) is a library for efficient distributed deep learning training implementing such collectives like allreduce, allgather, alltoall. For more information on oneCCL, please refer to the [oneCCL documentation](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html) and [oneCCL specification](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html). Module `oneccl_bindings_for_pytorch` (`torch_ccl` before version 1.12) implements PyTorch C10D ProcessGroup API and can be dynamically loaded as external ProcessGroup and only works on Linux platform now Check more detailed information for [oneccl_bind_pt](https://github.com/intel/torch-ccl).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_2
Wheel files are available for the following Python versions: | Extension Version | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | Python 3.11 | | :---------------: | :--------: | :--------: | :--------: | :---------: | :---------: | | 2.5.0 | | √ | √ | √ | √ | | 2.4.0 | | √ | √ | √ | √ | | 2.3.0 | | √ | √ | √ | √ | | 2.2.0 | | √ | √ | √ | √ | Please run `pip list | grep torch` to get your `pytorch_version`. ```bash pip install oneccl_bind_pt=={pytorch_version} -f https://developer.intel.com/ipex-whl-stable-cpu ``` where `{pytorch_version}` should be your PyTorch version, for instance 2.4.0. Check more approaches for [oneccl_bind_pt installation](https://github.com/intel/torch-ccl). Versions of oneCCL and PyTorch must match.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_3
Use this standards-based MPI implementation to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. This component is part of the Intel® oneAPI HPC Toolkit. oneccl_bindings_for_pytorch is installed along with the MPI tool set. Need to source the environment before using it. ```bash oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_4
Intel Extension for PyTorch (IPEX) provides performance optimizations for CPU training with both Float32 and BFloat16 (refer to the [single CPU section](./perf_train_cpu) to learn more). The following "Usage in Trainer" takes mpirun in Intel® MPI library as an example.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_5
To enable multi CPU distributed training in the Trainer with the ccl backend, users should add **`--ddp_backend ccl`** in the command arguments. Let's see an example with the [question-answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) The following command enables training with 2 processes on one Xeon node, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance. ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=127.0.0.1 mpirun -n 2 -genv OMP_NUM_THREADS=23 \ python3 examples/pytorch/question-answering/run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex ``` The following command enables training with a total of four processes on two Xeons (node0 and node1, taking node0 as the main process), ppn (processes per node) is set to 2, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance. In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument. ```shell script cat hostfile xxx.xxx.xxx.xxx #node0 ip xxx.xxx.xxx.xxx #node1 ip ``` Now, run the following command in node0 and **4DDP** will be enabled in node0 and node1 with BF16 auto mixed precision: ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 4 -ppn 2 \ -genv OMP_NUM_THREADS=23 \ python3 examples/pytorch/question-answering/run_qa.py \ --model_name_or_path google-bert/bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex \ --bf16 ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_6
The same distributed training job from the previous section can be deployed to a Kubernetes cluster using the [Kubeflow PyTorchJob training operator](https://www.kubeflow.org/docs/components/training/user-guides/pytorch).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_7
This example assumes that you have: * Access to a Kubernetes cluster with [Kubeflow installed](https://www.kubeflow.org/docs/started/installing-kubeflow) * [`kubectl`](https://kubernetes.io/docs/tasks/tools) installed and configured to access the Kubernetes cluster * A [Persistent Volume Claim (PVC)](https://kubernetes.io/docs/concepts/storage/persistent-volumes) that can be used to store datasets and model files. There are multiple options for setting up the PVC including using an NFS [storage class](https://kubernetes.io/docs/concepts/storage/storage-classes) or a cloud storage bucket. * A Docker container that includes your model training script and all the dependencies needed to run the script. For distributed CPU training jobs, this typically includes PyTorch, Transformers, Intel Extension for PyTorch, Intel oneCCL Bindings for PyTorch, and OpenSSH to communicate between the containers. The snippet below is an example of a Dockerfile that uses a base image that supports distributed CPU training and then extracts a Transformers release to the `/workspace` directory, so that the example scripts are included in the image: ```dockerfile FROM intel/intel-optimized-pytorch:2.4.0-pip-multinode RUN apt-get update -y && \ apt-get install -y --no-install-recommends --fix-missing \ google-perftools \ libomp-dev WORKDIR /workspace # Download and extract the transformers code ARG HF_TRANSFORMERS_VER="4.46.0" RUN pip install --no-cache-dir \ transformers==${HF_TRANSFORMERS_VER} && \ mkdir transformers && \ curl -sSL --retry 5 https://github.com/huggingface/transformers/archive/refs/tags/v${HF_TRANSFORMERS_VER}.tar.gz | tar -C transformers --strip-components=1 -xzf - ``` The image needs to be built and copied to the cluster's nodes or pushed to a container registry prior to deploying the PyTorchJob to the cluster.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_8
The [Kubeflow PyTorchJob](https://www.kubeflow.org/docs/components/training/user-guides/pytorch) is used to run the distributed training job on the cluster. The yaml file for the PyTorchJob defines parameters such as: * The name of the PyTorchJob * The number of replicas (workers) * The python script and it's parameters that will be used to run the training job * The types of resources (node selector, memory, and CPU) needed for each worker * The image/tag for the Docker container to use * Environment variables * A volume mount for the PVC The volume mount defines a path where the PVC will be mounted in the container for each worker pod. This location can be used for the dataset, checkpoint files, and the saved model after training completes. The snippet below is an example of a yaml file for a PyTorchJob with 4 workers running the [question-answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering). ```yaml apiVersion: "kubeflow.org/v1" kind: PyTorchJob metadata: name: transformers-pytorchjob spec: elasticPolicy: rdzvBackend: c10d minReplicas: 1 maxReplicas: 4 maxRestarts: 10 pytorchReplicaSpecs: Worker: replicas: 4 # The number of worker pods restartPolicy: OnFailure template: spec: containers: - name: pytorch image: <image name>:<tag> # Specify the docker image to use for the worker pods imagePullPolicy: IfNotPresent command: ["/bin/bash", "-c"] args: - >- cd /workspace/transformers; pip install -r /workspace/transformers/examples/pytorch/question-answering/requirements.txt; source /usr/local/lib/python3.10/dist-packages/oneccl_bindings_for_pytorch/env/setvars.sh; torchrun /workspace/transformers/examples/pytorch/question-answering/run_qa.py \ --model_name_or_path distilbert/distilbert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/pvc-mount/output_$(date +%Y%m%d_%H%M%S) \ --no_cuda \ --ddp_backend ccl \ --bf16 \ --use_ipex; env: - name: LD_PRELOAD value: "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4.5.9:/usr/local/lib/libiomp5.so" - name: TRANSFORMERS_CACHE value: "/tmp/pvc-mount/transformers_cache" - name: HF_DATASETS_CACHE value: "/tmp/pvc-mount/hf_datasets_cache" - name: LOGLEVEL value: "INFO" - name: CCL_WORKER_COUNT value: "1" - name: OMP_NUM_THREADS # Can be tuned for optimal performance value: "240" resources: limits: cpu: 240 # Update the CPU and memory limit values based on your nodes memory: 128Gi requests: cpu: 240 # Update the CPU and memory request values based on your nodes memory: 128Gi volumeMounts: - name: pvc-volume mountPath: /tmp/pvc-mount - mountPath: /dev/shm name: dshm restartPolicy: Never nodeSelector: # Optionally use nodeSelector to match a certain node label for the worker pods node-type: gnr volumes: - name: pvc-volume persistentVolumeClaim: claimName: transformers-pvc - name: dshm emptyDir: medium: Memory ``` To run this example, update the yaml based on your training script and the nodes in your cluster. <Tip> The CPU resource limits/requests in the yaml are defined in [cpu units](https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu) where 1 CPU unit is equivalent to 1 physical CPU core or 1 virtual core (depending on whether the node is a physical host or a VM). The amount of CPU and memory limits/requests defined in the yaml should be less than the amount of available CPU/memory capacity on a single machine. It is usually a good idea to not use the entire machine's capacity in order to leave some resources for the kubelet and OS. In order to get ["guaranteed"](https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#guaranteed) [quality of service](https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod) for the worker pods, set the same CPU and memory amounts for both the resource limits and requests. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_9
After the PyTorchJob spec has been updated with values appropriate for your cluster and training job, it can be deployed to the cluster using: ```bash export NAMESPACE=<specify your namespace> kubectl create -f pytorchjob.yaml -n ${NAMESPACE} ``` The `kubectl get pods -n ${NAMESPACE}` command can then be used to list the pods in your namespace. You should see the worker pods for the PyTorchJob that was just deployed. At first, they will probably have a status of "Pending" as the containers get pulled and created, then the status should change to "Running". ``` NAME READY STATUS RESTARTS AGE ... transformers-pytorchjob-worker-0 1/1 Running 0 7m37s transformers-pytorchjob-worker-1 1/1 Running 0 7m37s transformers-pytorchjob-worker-2 1/1 Running 0 7m37s transformers-pytorchjob-worker-3 1/1 Running 0 7m37s ... ``` The logs for worker can be viewed using `kubectl logs <pod name> -n ${NAMESPACE}`. Add `-f` to stream the logs, for example: ```bash kubectl logs transformers-pytorchjob-worker-0 -n ${NAMESPACE} -f ``` After the training job completes, the trained model can be copied from the PVC or storage location. When you are done with the job, the PyTorchJob resource can be deleted from the cluster using `kubectl delete -f pytorchjob.yaml -n ${NAMESPACE}`.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_10
This guide covered running distributed PyTorch training jobs using multiple CPUs on bare metal and on a Kubernetes cluster. Both cases utilize Intel Extension for PyTorch and Intel oneCCL Bindings for PyTorch for optimal training performance, and can be used as a template to run your own workload on multiple nodes.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/perf_train_cpu_many.md
.md
4_11
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/pad_truncation.md
.md
5_0
Batched inputs are often different lengths, so they can't be converted to fixed-size tensors. Padding and truncation are strategies for dealing with this problem, to create rectangular tensors from batches of varying lengths. Padding adds a special **padding token** to ensure shorter sequences will have the same length as either the longest sequence in a batch or the maximum length accepted by the model. Truncation works in the other direction by truncating long sequences. In most cases, padding your batch to the length of the longest sequence and truncating to the maximum length a model can accept works pretty well. However, the API supports more strategies if you need them. The three arguments you need to know are: `padding`, `truncation` and `max_length`. The `padding` argument controls padding. It can be a boolean or a string: - `True` or `'longest'`: pad to the longest sequence in the batch (no padding is applied if you only provide a single sequence). - `'max_length'`: pad to a length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). Padding will still be applied if you only provide a single sequence. - `False` or `'do_not_pad'`: no padding is applied. This is the default behavior. The `truncation` argument controls truncation. It can be a boolean or a string: - `True` or `'longest_first'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will truncate token by token, removing a token from the longest sequence in the pair until the proper length is reached. - `'only_second'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will only truncate the second sentence of a pair if a pair of sequences (or a batch of pairs of sequences) is provided. - `'only_first'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will only truncate the first sentence of a pair if a pair of sequences (or a batch of pairs of sequences) is provided. - `False` or `'do_not_truncate'`: no truncation is applied. This is the default behavior. The `max_length` argument controls the length of the padding and truncation. It can be an integer or `None`, in which case it will default to the maximum length the model can accept. If the model has no specific maximum input length, truncation or padding to `max_length` is deactivated. The following table summarizes the recommended way to setup padding and truncation. If you use pairs of input sequences in any of the following examples, you can replace `truncation=True` by a `STRATEGY` selected in `['only_first', 'only_second', 'longest_first']`, i.e. `truncation='only_second'` or `truncation='longest_first'` to control how both sequences in the pair are truncated as detailed before. | Truncation | Padding | Instruction | |--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------| | no truncation | no padding | `tokenizer(batch_sentences)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True)` or | | | | `tokenizer(batch_sentences, padding='longest')` | | | padding to max model input length | `tokenizer(batch_sentences, padding='max_length')` | | | padding to specific length | `tokenizer(batch_sentences, padding='max_length', max_length=42)` | | | padding to a multiple of a value | `tokenizer(batch_sentences, padding=True, pad_to_multiple_of=8)` | | truncation to max model input length | no padding | `tokenizer(batch_sentences, truncation=True)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True, truncation=True)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` | | | padding to max model input length | `tokenizer(batch_sentences, padding='max_length', truncation=True)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` | | | padding to specific length | Not possible | | truncation to specific length | no padding | `tokenizer(batch_sentences, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` | | | padding to max model input length | Not possible | | | padding to specific length | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/pad_truncation.md
.md
5_1
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_0
Efficient caching is crucial for optimizing the performance of models in various generative tasks, including text generation, translation, summarization and other transformer-based applications. Effective caching helps reduce computation time and improve response rates, especially in real-time or resource-intensive applications. Transformers support various caching methods, leveraging "Cache" classes to abstract and manage the caching logic. This document outlines best practices for using these classes to maximize performance and efficiency. Check out all the available `Cache` classes in the [API documentation](./internal/generation_utils).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_1
Imagine you’re having a conversation with someone, and instead of remembering what was said previously, you have to start from scratch every time you respond. This would be slow and inefficient, right? In the world of Transformer models, a similar concept applies, and that's where Caching keys and values come into play. From now on, I'll refer to the concept as KV Cache. KV cache is needed to optimize the generation in autoregressive models, where the model predicts text token by token. This process can be slow since the model can generate only one token at a time, and each new prediction is dependent on the previous context. That means, to predict token number 1000 in the generation, you need information from the previous 999 tokens, which comes in the form of some matrix multiplications across the representations of those tokens. But to predict token number 1001, you also need the same information from the first 999 tokens, plus additional information from token number 1000. That is where key-value cache is used to optimize the sequential generation process by storing previous calculations to reuse in subsequent tokens, so they don't need to be computed again. More concretely, key-value cache acts as a memory bank for these generative models, where the model stores key-value pairs derived from self-attention layers for previously processed tokens. By storing this information, the model can avoid redundant computations and instead retrieve keys and values of previous tokens from the cache. Note that caching can be used only in inference and should be disabled when training, otherwise it might cause unexpected errors. <details> <summary><em>For the Curious Minds Who Like to Dive Deep</em></summary>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_2
When utilizing a cache object in the input, the Attention module performs several critical steps to integrate past and present information seamlessly. The Attention module concatenates the current key-values with the past key-values stored in the cache. This results in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Essentially, the past and current key-values are combined to compute attention scores, ensuring that the model considers both previous context and new input. The concatenated key-values are used to compute the attention scores resulting in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Therefore, when iteratively calling `forward()` instead of the `generate()` method, it’s crucial to ensure that the attention mask shape matches the combined length of past and current key-values. The attention mask should have the shape `(batch_size, past_kv_length + new_tokens_length)`. This is usually handled internally when you call `generate()` method. If you want to implement your own generation loop with Cache classes, take this into consideration and prepare the attention mask to hold values to current and past tokens. <Tip warning={true}> One important concept you need to know when writing your own generation loop, is `cache_position`. In case you want to reuse an already filled Cache object by calling `forward()`, you have to pass in a valid `cache_position` which will indicate the positions of inputs in the sequence. Note that `cache_position` is not affected by padding, and always adds one more position for each token. For example, if key/value cache contains 10 tokens (no matter how many of it is a pad token), the cache position for the next token should be `torch.tensor([10])`. </Tip> See an example below for how to implement your own generation loop. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache >>> model_id = "meta-llama/Llama-2-7b-chat-hf" >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0") >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> past_key_values = DynamicCache() >>> messages = [{"role": "user", "content": "Hello, what's your name."}] >>> inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0") >>> generated_ids = inputs.input_ids >>> cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0") >>> max_new_tokens = 10 >>> for _ in range(max_new_tokens): ... outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True) ... # Greedily sample one next token ... next_token_ids = outputs.logits[:, -1:].argmax(-1) ... generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1) ... ... # Prepare inputs for the next generation step by leaaving unprocessed tokens, in our case we have only one new token ... # and expanding attn mask for the new token, as explained above ... attention_mask = inputs["attention_mask"] ... attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1) ... inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask} ... cache_position = cache_position[-1:] + 1 # add one more position for the next token >>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]) "[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA," ``` </details>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_3
In 🤗 Transformers, we support various Cache types to optimize the performance across different models and tasks. By default, all models generate with caching, with the [`~DynamicCache`] class being the default cache for most models. It allows us to dynamically grow cache size, by saving more and more keys and values as we generate. If for some reason you don't want to use caches, you can pass `use_cache=False` into the `generate()` method. Refer to the table below to see the difference between cache types and choose the one that suits best for your use-case. Models for which initialization is recommended should be initialized before calling the model and passed to model as a kwarg. In all other cases you can simply define desired `cache_implementation` and we take care of the rest for you. | Cache Type | Memory Efficient | Supports torch.compile() | Initialization Recommended | Latency | Long Context Generation | |------------------------|------------------|--------------------------|----------------------------|---------|-------------------------| | Dynamic Cache | No | No | No | Mid | No | | Static Cache | No | Yes | Yes | High | No | | Offloaded Cache | Yes | No | No | Low | Yes | | Offloaded Static Cache | No | Yes | Yes | High | Yes | | Quantized Cache | Yes | No | No | Low | Yes | | Sliding Window Cache | No | Yes | Yes | High | No | | Sink Cache | Yes | No | Yes | Mid | Yes | These cache classes can be set with a `cache_implementation` argument when generating. To learn about the available options for the cache_implementation flag, please refer to the [API Documentation](./main_classes/text_generation#transformers.GenerationConfig). Now, let's explore each cache type in detail and see how to use them. Note that the below examples are for decoder-only Tranformer-based models. We also support ["Model-Specific Cache"] classes for models such as Mamba or Jamba, keep reading for more details.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_4
The key and value cache can occupy a large portion of memory, becoming a [bottleneck for long-context generation](https://huggingface.co/blog/llama31#inference-memory-requirements), especially for Large Language Models. Quantizing the cache when using `generate()` can significantly reduce memory requirements at the cost of speed. KV Cache quantization in `transformers` is largely inspired by the paper ["KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache"](https://arxiv.org/abs/2402.02750) and currently supports [`~QuantoQuantizedCache`] and [`~HQQQuantizedCache`] classes. For more information on the inner workings see the paper. To enable quantization of the key-value cache, one needs to indicate `cache_implementation="quantized"` in the `generation_config`. Quantization related arguments should be passed to the `generation_config` either as a `dict` or an instance of a [`~QuantizedCacheConfig`] class. One has to indicate which quantization backend to use in the [`~QuantizedCacheConfig`], the default is `quanto`. It is recommended to set `axis-key/axis-value` parameters in the cache config to `0` if you're using the `quanto` backend and to `1` if you're using the `HQQ` backend. For other config values, please use the defaults unless you're running out of memory. In that case, you may consider decreasing the residual length. <Tip warning={true}> Cache quantization can be detrimental in terms of latency if the context length is short and there is enough GPU VRAM available to run without cache quantization. It is recommended to seek balance between memory efficiency and latency. </Tip> ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"}) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) I like rock music because it's loud and energetic. It's a great way to express myself and rel >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) I like rock music because it's loud and energetic. I like to listen to it when I'm feeling ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_5
Similarly to KV cache quantization, [`~OffloadedCache`] strategy aims to reduce GPU VRAM usage. It does so by moving the KV cache for most layers to the CPU. As the model's `forward()` method iterates over the layers, this strategy maintains the current layer cache on the GPU. At the same time it asynchronously prefetches the next layer cache as well as sending the previous layer cache back to the CPU. Unlike KV cache quantization, this strategy always produces the same result as the default KV cache implementation. Thus, it can serve as a drop-in replacement or a fallback for it. Depending on your model and the characteristics of your generation task (size of context, number of generated tokens, number of beams, etc.) you may notice a small degradation in generation throughput compared to the default KV cache implementation. To enable KV cache offloading, pass `cache_implementation="offloaded"` in the `generation_config` or directly to the `generate()` call. Use `cache_implementation="offloaded_static"` for an offloaded static cache (see also [Offloaded Static Cache](#offloaded-static-cache) below). ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> ckpt = "microsoft/Phi-3-mini-4k-instruct" >>> tokenizer = AutoTokenizer.from_pretrained(ckpt) >>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("Fun fact: The shortest", return_tensors="pt").to(model.device) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23, cache_implementation="offloaded") >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896. >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896. ``` <Tip warning={true}> Cache offloading requires a CUDA GPU and can be slower than dynamic KV cache. Use it if you are getting CUDA out of memory errors. </Tip> The example below shows how KV cache offloading can be used as a fallback strategy. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> def resilient_generate(model, *args, **kwargs): ... oom = False ... try: ... return model.generate(*args, **kwargs) ... except torch.cuda.OutOfMemoryError as e: ... print(e) ... print("retrying with cache_implementation='offloaded'") ... oom = True ... if oom: ... torch.cuda.empty_cache() ... kwargs["cache_implementation"] = "offloaded" ... return model.generate(*args, **kwargs) ... ... >>> ckpt = "microsoft/Phi-3-mini-4k-instruct" >>> tokenizer = AutoTokenizer.from_pretrained(ckpt) >>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0") >>> prompt = ["okay "*1000 + "Fun fact: The most"] >>> inputs = tokenizer(prompt, return_tensors="pt").to(model.device) >>> beams = { "num_beams": 40, "num_beam_groups": 40, "num_return_sequences": 40, "diversity_penalty": 1.0, "max_new_tokens": 23, "early_stopping": True, } >>> out = resilient_generate(model, **inputs, **beams) >>> responses = tokenizer.batch_decode(out[:,-28:], skip_special_tokens=True) ``` On a GPU with 50 GB of RAM, running this code will print ``` CUDA out of memory. Tried to allocate 4.83 GiB. GPU retrying with cache_implementation='offloaded' ``` before successfully generating 40 beams.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_6
Since the "DynamicCache" dynamically grows with each generation step, it prevents you from taking advantage of JIT optimizations. The [`~StaticCache`] pre-allocates a specific maximum size for the keys and values, allowing you to generate up to the maximum length without having to modify cache size. Check the below usage example. For more examples with Static Cache and JIT compilation, take a look at [StaticCache & torchcompile](./llm_optims#static-kv-cache-and-torchcompile) ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto") >>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device) >>> # simply pass the cache implementation="static" >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="static") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of" ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_7
Like [`~OffloadedCache`] exists for offloading a "DynamicCache", there is also an offloaded static cache. It fully supports JIT optimizations. Just pass `cache_implementation="offloaded_static"` in the `generation_config` or directly to the `generate()` call. This will use the [`~OffloadedStaticCache`] implementation instead. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto") >>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device) >>> # simply pass the cache implementation="static" >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of" ``` Cache offloading requires a CUDA GPU.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_8
As the name suggests, this cache type implements a sliding window over previous keys and values, retaining only the last `sliding_window` tokens. It should be used with models like Mistral that support sliding window attention. Additionally, similar to Static Cache, this one is JIT-friendly and can be used with the same compile tecniques as Static Cache. Note that you can use this cache only for models that support sliding window, e.g. Mistral models. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device) >>> # can be used by passing in cache implementation >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Yesterday I was on a rock concert and. I was so excited to see my favorite band. I was so excited that I was jumping up and down and screaming. I was so excited that I" ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_9
Sink Cache was introduced in ["Efficient Streaming Language Models with Attention Sinks"](https://arxiv.org/abs/2309.17453). It allows you to generate long sequences of text ("infinite length" according to the paper) without any fine-tuning. That is achieved by smart handling of previous keys and values, specifically it retains a few initial tokens from the sequence, called "sink tokens". This is based on the observation that these initial tokens attract a significant portion of attention scores during the generation process. Tokens that come after "sink tokens" are discarded on a sliding windowed basis, keeping only the latest `window_size` tokens. By keeping these initial tokens as "attention sinks," the model maintains stable performance even when dealing with very long texts, thus discarding most of the previous knowledge. Unlike other cache classes, this one can't be used directly by indicating a `cache_implementation`. You have to initialize the Cache before calling on `generate()` as follows. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device) >>> # get our cache, specify number of sink tokens and window size >>> # Note that window size already includes sink tokens, so has to be larger >>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values) >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily" ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_10
The [`~EncoderDecoderCache`] is a wrapper designed to handle the caching needs of encoder-decoder models. This cache type is specifically built to manage both self-attention and cross-attention caches, ensuring storage and retrieval of past key/values required for these complex models. Cool thing about Encoder-Decoder Cache is that you can set different cache types for the encoder and for the decoder, depending on your use case. Currently this cache is only supported in [Whisper](./model_doc/whisper) models but we will be adding more models soon. In terms of usage, there is nothing special to be done and calling `generate()` or `forward()` will handle everything for you.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_11
Some models require storing previous keys, values, or states in a specific way, and the above cache classes cannot be used. For such cases, we have several specialized cache classes that are designed for specific models. These models only accept their own dedicated cache classes and do not support using any other cache types. Some examples include [`~HybridCache`] for [Gemma2](./model_doc/gemma2) series models or [`~MambaCache`] for [Mamba](./model_doc/mamba) architecture models.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_12
We have seen how to use each of the cache types when generating. What if you want to use cache in iterative generation setting, for example in applications like chatbots, where interactions involve multiple turns and continuous back-and-forth exchanges. Iterative generation with cache allows these systems to handle ongoing conversations effectively without reprocessing the entire context at each step. But there are some tips that you should know before you start implementing: The general format when doing iterative generation is as below. First you have to initialize an empty cache of the type you want, and you can start feeding in new prompts iteratively. Keeping track of dialogues history and formatting can be done with chat templates, read more on that in [chat_templating](./chat_templating) In case you are using Sink Cache, you have to crop your inputs to that maximum length because Sink Cache can generate text longer than its maximum window size, but it expects the first input to not exceed the maximum cache length. ```python >>> import torch >>> from transformers import AutoTokenizer,AutoModelForCausalLM >>> from transformers.cache_utils import ( >>> DynamicCache, >>> SinkCache, >>> StaticCache, >>> SlidingWindowCache, >>> QuantoQuantizedCache, >>> QuantizedCacheConfig, >>> ) >>> model_id = "meta-llama/Llama-2-7b-chat-hf" >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='auto') >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> user_prompts = ["Hello, what's your name?", "Btw, yesterday I was on a rock concert."] >>> past_key_values = DynamicCache() >>> max_cache_length = past_key_values.get_max_length() >>> messages = [] >>> for prompt in user_prompts: ... messages.append({"role": "user", "content": prompt}) ... inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) ... if isinstance(past_key_values, SinkCache): ... inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()} ... ... input_length = inputs["input_ids"].shape[1] ... ... outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values) ... completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True) ... messages.append({"role": "assistant", "content": completion}) print(messages) [{'role': 'user', 'content': "Hello, what's your name?"}, {'role': 'assistant', 'content': " Hello! My name is LLaMA, I'm a large language model trained by a team of researcher at Meta AI. 😊"}, {'role': 'user', 'content': 'Btw, yesterday I was on a rock concert.'}, {'role': 'assistant', 'content': ' Oh, cool! That sounds like a lot of fun! 🎉 Did you enjoy the concert? What was the band like? 🤔'}] ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_13
Sometimes you would want to first fill-in cache object with key/values for certain prefix prompt and re-use it several times to generate different sequences from it. In that case you can construct a `Cache` object that will hold the instruction prompt, and re-use it several times with different text sequences. ```python >>> import copy >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, StaticCache >>> model_id = "meta-llama/Llama-2-7b-chat-hf" >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda") >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> # Init StaticCache with big enough max-length (1024 tokens for the below example) >>> # You can also init a DynamicCache, if that suits you better >>> prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16) >>> INITIAL_PROMPT = "You are a helpful assistant. " >>> inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda") >>> # This is the common prompt cached, we need to run forward without grad to be abel to copy >>> with torch.no_grad(): ... prompt_cache = model(**inputs_initial_prompt, past_key_values = prompt_cache).past_key_values >>> prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"] >>> responses = [] >>> for prompt in prompts: ... new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda") ... past_key_values = copy.deepcopy(prompt_cache) ... outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20) ... response = tokenizer.batch_decode(outputs)[0] ... responses.append(response) >>> print(responses) ['<s> You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTitle: The Ultimate Guide to Travelling: Tips, Tricks, and', '<s> You are a helpful assistant. What is the capital of France?\n\nYes, the capital of France is Paris.</s>'] ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_14
Prior to the introduction of the `Cache` object, the cache of LLMs used to be a tuple of tuples of tensors. The legacy format has a dynamic size, growing as we generate text -- very similar to `DynamicCache`. If your project depend on this legacy format, you can seamlessly convert it to a `DynamicCache` and back. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto") >>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device) >>> # `return_dict_in_generate=True` is required to return the cache. `return_legacy_cache` forces the returned cache >>> # to be of the legacy type >>> generation_outputs = model.generate(**inputs, return_dict_in_generate=True, return_legacy_cache=True, max_new_tokens=5) >>> # We can convert a legacy cache to a DynamicCache -- and the other way around. This is helpful if you have custom >>> # logic to manipulate a cache in a specific format. >>> cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values) >>> legacy_format_cache = cache.to_legacy_cache() ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/kv_cache.md
.md
6_15
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_0
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_1
Get started by installing 🤗 Accelerate: ```bash pip install accelerate ``` Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_2
The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_3
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`] method: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_4
Once you've added the relevant lines of code, launch your training in a script or a notebook like Colaboratory.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_5
If you are running your training from a script, run the following command to create and save a configuration file: ```bash accelerate config ``` Then launch your training with: ```bash accelerate launch train.py ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_6
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/accelerate.md
.md
7_7
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/community.md
.md
8_0
This page regroups resources around 🤗 Transformers developed by the community.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/community.md
.md
8_1
| Resource | Description | Author | |:----------|:-------------|------:| | [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/community.md
.md
8_2
| Notebook | Description | Author | | |:----------|:-------------|:-------------|------:| | [Fine-tune a pre-trained Transformer to generate lyrics](https://github.com/AlekseyKorshuk/huggingartists) | How to generate lyrics in the style of your favorite artist by fine-tuning a GPT-2 model | [Aleksey Korshuk](https://github.com/AlekseyKorshuk) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb) | | [Train T5 in Tensorflow 2](https://github.com/snapthat/TF-T5-text-to-text) | How to train T5 for any task using Tensorflow 2. This notebook demonstrates a Question & Answer task implemented in Tensorflow 2 using SQUAD | [Muhammad Harris](https://github.com/HarrisDePerceptron) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb) | | [Train T5 on TPU](https://github.com/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) | How to train T5 on SQUAD with Transformers and Nlp | [Suraj Patil](https://github.com/patil-suraj) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) | | [Fine-tune T5 for Classification and Multiple Choice](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | How to fine-tune T5 for classification and multiple choice tasks using a text-to-text format with PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | | [Fine-tune DialoGPT on New Datasets and Languages](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | How to fine-tune the DialoGPT model on a new dataset for open-dialog conversational chatbots | [Nathan Cooper](https://github.com/ncoop57) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | | [Long Sequence Modeling with Reformer](https://github.com/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | How to train on sequences as long as 500,000 tokens with Reformer | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | | [Fine-tune BART for Summarization](https://github.com/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | How to fine-tune BART for summarization with fastai using blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | | [Fine-tune a pre-trained Transformer on anyone's tweets](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | How to generate tweets in the style of your favorite Twitter account by fine-tuning a GPT-2 model | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | | [Optimize 🤗 Hugging Face models with Weights & Biases](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | A complete tutorial showcasing W&B integration with Hugging Face | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | | [Pretrain Longformer](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | How to build a "long" version of existing pretrained models | [Iz Beltagy](https://beltagy.net) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | | [Fine-tune Longformer for QA](https://github.com/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | How to fine-tune longformer model for QA task | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | | [Evaluate Model with 🤗nlp](https://github.com/patrickvonplaten/notebooks/blob/master/How_to_evaluate_Longformer_on_TriviaQA_using_NLP.ipynb) | How to evaluate longformer on TriviaQA with `nlp` | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1m7eTGlPmLRgoPkkA7rkhQdZ9ydpmsdLE?usp=sharing) | | [Fine-tune T5 for Sentiment Span Extraction](https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | How to fine-tune T5 for sentiment span extraction using a text-to-text format with PyTorch Lightning | [Lorenzo Ampil](https://github.com/enzoampil) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | | [Fine-tune DistilBert for Multiclass Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb) | How to fine-tune DistilBert for multiclass classification with PyTorch | [Abhishek Kumar Mishra](https://github.com/abhimishra91) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb)| |[Fine-tune BERT for Multi-label Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)|How to fine-tune BERT for multi-label classification using PyTorch|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)| |[Fine-tune T5 for Summarization](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)|How to fine-tune T5 for summarization in PyTorch and track experiments with WandB|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)| |[Speed up Fine-Tuning in Transformers with Dynamic Padding / Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)|How to speed up fine-tuning by a factor of 2 using dynamic padding / bucketing|[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)| |[Pretrain Reformer for Masked Language Modeling](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| How to train a Reformer model with bi-directional self-attention layers | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)| |[Expand and Fine Tune Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| How to increase vocabulary of a pretrained SciBERT model from AllenAI on the CORD dataset and pipeline it. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)| |[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine-tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)| |[Fine-tune Electra and interpret with Integrated Gradients](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | How to fine-tune Electra for sentiment analysis and interpret predictions with Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)| |[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | How to fine-tune a non-English GPT-2 Model with Trainer class | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)| |[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | How to fine-tune a DistilBERT Model for Multi Label Classification task | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)| |[Fine-tune ALBERT for sentence-pair classification](https://github.com/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb) | How to fine-tune an ALBERT model or another BERT-based model for the sentence-pair classification task | [Nadir El Manouzi](https://github.com/NadirEM) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb)| |[Fine-tune Roberta for sentiment analysis](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | How to fine-tune a Roberta model for sentiment analysis | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)| |[Evaluating Question Generation Models](https://github.com/flexudy-pipe/qugeev) | How accurate are the answers to questions generated by your seq2seq transformer model? | [Pascal Zoleko](https://github.com/zolekode) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)| |[Classify text with DistilBERT and Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | How to fine-tune DistilBERT for text classification in TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)| |[Leverage BERT for Encoder-Decoder Summarization on CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | How to warm-start a *EncoderDecoderModel* with a *google-bert/bert-base-uncased* checkpoint for summarization on CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)| |[Leverage RoBERTa for Encoder-Decoder Summarization on BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | How to warm-start a shared *EncoderDecoderModel* with a *FacebookAI/roberta-base* checkpoint for summarization on BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)| |[Fine-tune TAPAS on Sequential Question Answering (SQA)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb) | How to fine-tune *TapasForQuestionAnswering* with a *tapas-base* checkpoint on the Sequential Question Answering (SQA) dataset | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb)| |[Evaluate TAPAS on Table Fact Checking (TabFact)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb) | How to evaluate a fine-tuned *TapasForSequenceClassification* with a *tapas-base-finetuned-tabfact* checkpoint using a combination of the 🤗 datasets and 🤗 transformers libraries | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb)| |[Fine-tuning mBART for translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb) | How to fine-tune mBART using Seq2SeqTrainer for Hindi to English translation | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)| |[Fine-tune LayoutLM on FUNSD (a form understanding dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb) | How to fine-tune *LayoutLMForTokenClassification* on the FUNSD dataset for information extraction from scanned documents | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb)| |[Fine-Tune DistilGPT2 and Generate Text](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb) | How to fine-tune DistilGPT2 and generate text | [Aakash Tripathi](https://github.com/tripathiaakash) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb)| |[Fine-Tune LED on up to 8K tokens](https://github.com/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb) | How to fine-tune LED on pubmed for long-range summarization | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb)| |[Evaluate LED on Arxiv](https://github.com/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb) | How to effectively evaluate LED on long-range summarization | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb)| |[Fine-tune LayoutLM on RVL-CDIP (a document image classification dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb) | How to fine-tune *LayoutLMForSequenceClassification* on the RVL-CDIP dataset for scanned document classification | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb)| |[Wav2Vec2 CTC decoding with GPT2 adjustment](https://github.com/voidful/huggingface_notebook/blob/main/xlsr_gpt.ipynb) | How to decode CTC sequence with language model adjustment | [Eric Lam](https://github.com/voidful) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)| |[Fine-tune BART for summarization in two languages with Trainer class](https://github.com/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb) | How to fine-tune BART for summarization in two languages with Trainer class | [Eliza Szczechla](https://github.com/elsanns) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)| |[Evaluate Big Bird on Trivia QA](https://github.com/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb) | How to evaluate BigBird on long document question answering on Trivia QA | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb)| | [Create video captions using Wav2Vec2](https://github.com/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | How to create YouTube captions from any video by transcribing the audio with Wav2Vec | [Niklas Muennighoff](https://github.com/Muennighoff) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | | [Fine-tune the Vision Transformer on CIFAR-10 using PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and PyTorch Lightning | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | | [Fine-tune the Vision Transformer on CIFAR-10 using the 🤗 Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and the 🤗 Trainer | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | | [Evaluate LUKE on Open Entity, an entity typing dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | How to evaluate *LukeForEntityClassification* on the Open Entity dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | | [Evaluate LUKE on TACRED, a relation extraction dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | How to evaluate *LukeForEntityPairClassification* on the TACRED dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | | [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | How to evaluate *LukeForEntitySpanClassification* on the CoNLL-2003 dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | | [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | How to evaluate *BigBirdPegasusForConditionalGeneration* on PubMed dataset | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | | [Speech Emotion Classification with Wav2Vec2](https://github.com/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | | [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | | [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | | [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | How to fine-tune *T5* on a Named Entity Recognition Task | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) | | [Fine-Tuning Open-Source LLM using QLoRA with MLflow and PEFT](https://github.com/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) | How to use [QLoRA](https://github.com/artidoro/qlora) and [PEFT](https://huggingface.co/docs/peft/en/index) to fine-tune an LLM in a memory-efficient way, while using [MLflow](https://mlflow.org/docs/latest/llms/transformers/index.html) to manage experiment tracking | [Yuki Watanabe](https://github.com/B-Step62) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/community.md
.md
8_3
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_0
Sometimes errors occur, but we are here to help! This guide covers some of the most common issues we've seen and how you can resolve them. However, this guide isn't meant to be a comprehensive collection of every 🤗 Transformers issue. For more help with troubleshooting your issue, try: <Youtube id="S2EEG3JIt2A"/> 1. Asking for help on the [forums](https://discuss.huggingface.co/). There are specific categories you can post your question to, like [Beginners](https://discuss.huggingface.co/c/beginners/5) or [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9). Make sure you write a good descriptive forum post with some reproducible code to maximize the likelihood that your problem is solved! <Youtube id="_PAli-V4wj0"/> 2. Create an [Issue](https://github.com/huggingface/transformers/issues/new/choose) on the 🤗 Transformers repository if it is a bug related to the library. Try to include as much information describing the bug as possible to help us better figure out what's wrong and how we can fix it. 3. Check the [Migration](migration) guide if you use an older version of 🤗 Transformers since some important changes have been introduced between versions. For more details about troubleshooting and getting help, take a look at [Chapter 8](https://huggingface.co/course/chapter8/1?fw=pt) of the Hugging Face course.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_1
Some GPU instances on cloud and intranet setups are firewalled to external connections, resulting in a connection error. When your script attempts to download model weights or datasets, the download will hang and then timeout with the following message: ``` ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on. ``` In this case, you should try to run 🤗 Transformers on [offline mode](installation#offline-mode) to avoid the connection error.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_2
Training large models with millions of parameters can be challenging without the appropriate hardware. A common error you may encounter when the GPU runs out of memory is: ``` CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacity; 9.70 GiB already allocated; 179.81 MiB free; 9.85 GiB reserved in total by PyTorch) ``` Here are some potential solutions you can try to lessen memory use: - Reduce the [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) value in [`TrainingArguments`]. - Try using [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) in [`TrainingArguments`] to effectively increase overall batch size. <Tip> Refer to the Performance [guide](performance) for more details about memory-saving techniques. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_3
TensorFlow's [model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) method will save the entire model - architecture, weights, training configuration - in a single file. However, when you load the model file again, you may run into an error because 🤗 Transformers may not load all the TensorFlow-related objects in the model file. To avoid issues with saving and loading TensorFlow models, we recommend you: - Save the model weights as a `h5` file extension with [`model.save_weights`](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) and then reload the model with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> from transformers import TFPreTrainedModel >>> from tensorflow import keras >>> model.save_weights("some_folder/tf_model.h5") >>> model = TFPreTrainedModel.from_pretrained("some_folder") ``` - Save the model with [`~TFPretrainedModel.save_pretrained`] and load it again with [`~TFPreTrainedModel.from_pretrained`]: ```py >>> from transformers import TFPreTrainedModel >>> model.save_pretrained("path_to/model") >>> model = TFPreTrainedModel.from_pretrained("path_to/model") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_4
Another common error you may encounter, especially if it is a newly released model, is `ImportError`: ``` ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location) ``` For these error types, check to make sure you have the latest version of 🤗 Transformers installed to access the most recent models: ```bash pip install transformers --upgrade ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_5
Sometimes you may run into a generic CUDA error about an error in the device code. ``` RuntimeError: CUDA error: device-side assert triggered ``` You should try to run the code on a CPU first to get a more descriptive error message. Add the following environment variable to the beginning of your code to switch to a CPU: ```py >>> import os >>> os.environ["CUDA_VISIBLE_DEVICES"] = "" ``` Another option is to get a better traceback from the GPU. Add the following environment variable to the beginning of your code to get the traceback to point to the source of the error: ```py >>> import os >>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1" ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_6
In some cases, the output `hidden_state` may be incorrect if the `input_ids` include padding tokens. To demonstrate, load a model and tokenizer. You can access a model's `pad_token_id` to see its value. The `pad_token_id` may be `None` for some models, but you can always manually set it. ```py >>> from transformers import AutoModelForSequenceClassification >>> import torch >>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased") >>> model.config.pad_token_id 0 ``` The following example shows the output without masking the padding tokens: ```py >>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]]) >>> output = model(input_ids) >>> print(output.logits) tensor([[ 0.0082, -0.2307], [ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>) ``` Here is the actual output of the second sequence: ```py >>> input_ids = torch.tensor([[7592]]) >>> output = model(input_ids) >>> print(output.logits) tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>) ``` Most of the time, you should provide an `attention_mask` to your model to ignore the padding tokens to avoid this silent error. Now the output of the second sequence matches its actual output: <Tip> By default, the tokenizer creates an `attention_mask` for you based on your specific tokenizer's defaults. </Tip> ```py >>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]]) >>> output = model(input_ids, attention_mask=attention_mask) >>> print(output.logits) tensor([[ 0.0082, -0.2307], [-0.1008, -0.4061]], grad_fn=<AddmmBackward0>) ``` 🤗 Transformers doesn't automatically create an `attention_mask` to mask a padding token if it is provided because: - Some models don't have a padding token. - For some use-cases, users want a model to attend to a padding token.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_7
Generally, we recommend using the [`AutoModel`] class to load pretrained instances of models. This class can automatically infer and load the correct architecture from a given checkpoint based on the configuration. If you see this `ValueError` when loading a model from a checkpoint, this means the Auto class couldn't find a mapping from the configuration in the given checkpoint to the kind of model you are trying to load. Most commonly, this happens when a checkpoint doesn't support a given task. For instance, you'll see this error in the following example because there is no GPT2 for question answering: ```py >>> from transformers import AutoProcessor, AutoModelForQuestionAnswering >>> processor = AutoProcessor.from_pretrained("openai-community/gpt2-medium") >>> model = AutoModelForQuestionAnswering.from_pretrained("openai-community/gpt2-medium") ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering. Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ... ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/troubleshooting.md
.md
9_8
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_0
Deploying 🤗 Transformers models in production environments often requires, or can benefit from exporting the models into a serialized format that can be loaded and executed on specialized runtimes and hardware. 🤗 Optimum is an extension of Transformers that enables exporting models from PyTorch or TensorFlow to serialized formats such as ONNX and TFLite through its `exporters` module. 🤗 Optimum also provides a set of performance optimization tools to train and run models on targeted hardware with maximum efficiency. This guide demonstrates how you can export 🤗 Transformers models to ONNX with 🤗 Optimum, for the guide on exporting models to TFLite, please refer to the [Export to TFLite page](tflite).
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_1
[ONNX (Open Neural Network eXchange)](http://onnx.ai) is an open standard that defines a common set of operators and a common file format to represent deep learning models in a wide variety of frameworks, including PyTorch and TensorFlow. When a model is exported to the ONNX format, these operators are used to construct a computational graph (often called an _intermediate representation_) which represents the flow of data through the neural network. By exposing a graph with standardized operators and data types, ONNX makes it easy to switch between frameworks. For example, a model trained in PyTorch can be exported to ONNX format and then imported in TensorFlow (and vice versa). Once exported to ONNX format, a model can be: - optimized for inference via techniques such as [graph optimization](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) and [quantization](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization). - run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort), which follow the same `AutoModel` API as the one you are used to in 🤗 Transformers. - run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines), which has the same API as the [`pipeline`] function in 🤗 Transformers. 🤗 Optimum provides support for the ONNX export by leveraging configuration objects. These configuration objects come ready-made for a number of model architectures, and are designed to be easily extendable to other architectures. For the list of ready-made configurations, please refer to [🤗 Optimum documentation](https://huggingface.co/docs/optimum/exporters/onnx/overview). There are two ways to export a 🤗 Transformers model to ONNX, here we show both: - export with 🤗 Optimum via CLI. - export with 🤗 Optimum with `optimum.onnxruntime`.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_2
To export a 🤗 Transformers model to ONNX, first install an extra dependency: ```bash pip install optimum[exporters] ``` To check out all available arguments, refer to the [🤗 Optimum docs](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli), or view help in command line: ```bash optimum-cli export onnx --help ``` To export a model's checkpoint from the 🤗 Hub, for example, `distilbert/distilbert-base-uncased-distilled-squad`, run the following command: ```bash optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/ ``` You should see the logs indicating progress and showing where the resulting `model.onnx` is saved, like this: ```bash Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx... -[✓] ONNX model output names match reference model (start_logits, end_logits) - Validating ONNX Model output "start_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) - Validating ONNX Model output "end_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx ``` The example above illustrates exporting a checkpoint from 🤗 Hub. When exporting a local model, first make sure that you saved both the model's weights and tokenizer files in the same directory (`local_path`). When using CLI, pass the `local_path` to the `model` argument instead of the checkpoint name on 🤗 Hub and provide the `--task` argument. You can review the list of supported tasks in the [🤗 Optimum documentation](https://huggingface.co/docs/optimum/exporters/task_manager). If `task` argument is not provided, it will default to the model architecture without any task specific head. ```bash optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/ ``` The resulting `model.onnx` file can then be run on one of the [many accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX standard. For example, we can load and run the model with [ONNX Runtime](https://onnxruntime.ai/) as follows: ```python >>> from transformers import AutoTokenizer >>> from optimum.onnxruntime import ORTModelForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx") >>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx") >>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt") >>> outputs = model(**inputs) ``` The process is identical for TensorFlow checkpoints on the Hub. For instance, here's how you would export a pure TensorFlow checkpoint from the [Keras organization](https://huggingface.co/keras-io): ```bash optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/ ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_3
Alternative to CLI, you can export a 🤗 Transformers model to ONNX programmatically like so: ```python >>> from optimum.onnxruntime import ORTModelForSequenceClassification >>> from transformers import AutoTokenizer >>> model_checkpoint = "distilbert_base_uncased_squad" >>> save_directory = "onnx/" >>> # Load a model from transformers and export it to ONNX >>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) >>> # Save the onnx model and tokenizer >>> ort_model.save_pretrained(save_directory) >>> tokenizer.save_pretrained(save_directory) ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_4
If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview), and if it is not, [contribute to 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) directly.
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_5
<Tip warning={true}> `transformers.onnx` is no longer maintained, please export models with 🤗 Optimum as described above. This section will be removed in the future versions. </Tip> To export a 🤗 Transformers model to ONNX with `transformers.onnx`, install extra dependencies: ```bash pip install transformers[onnx] ``` Use `transformers.onnx` package as a Python module to export a checkpoint using a ready-made configuration: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/ ``` This exports an ONNX graph of the checkpoint defined by the `--model` argument. Pass any checkpoint on the 🤗 Hub or one that's stored locally. The resulting `model.onnx` file can then be run on one of the many accelerators that support the ONNX standard. For example, load and run the model with ONNX Runtime as follows: ```python >>> from transformers import AutoTokenizer >>> from onnxruntime import InferenceSession >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> session = InferenceSession("onnx/model.onnx") >>> # ONNX Runtime expects NumPy arrays as input >>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np") >>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` The required output names (like `["last_hidden_state"]`) can be obtained by taking a look at the ONNX configuration of each model. For example, for DistilBERT we have: ```python >>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig >>> config = DistilBertConfig() >>> onnx_config = DistilBertOnnxConfig(config) >>> print(list(onnx_config.outputs.keys())) ["last_hidden_state"] ``` The process is identical for TensorFlow checkpoints on the Hub. For example, export a pure TensorFlow checkpoint like so: ```bash python -m transformers.onnx --model=keras-io/transformers-qa onnx/ ``` To export a model that's stored locally, save the model's weights and tokenizer files in the same directory (e.g. `local-pt-checkpoint`), then export it to ONNX by pointing the `--model` argument of the `transformers.onnx` package to the desired directory: ```bash python -m transformers.onnx --model=local-pt-checkpoint onnx/ ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/serialization.md
.md
10_6
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_0
[[open-in-colab]] There are significant benefits to using a pretrained model. It reduces computation costs, your carbon footprint, and allows you to use state-of-the-art models without having to train one from scratch. 🤗 Transformers provides access to thousands of pretrained models for a wide range of tasks. When you use a pretrained model, you train it on a dataset specific to your task. This is known as fine-tuning, an incredibly powerful training technique. In this tutorial, you will fine-tune a pretrained model with a deep learning framework of your choice: * Fine-tune a pretrained model with 🤗 Transformers [`Trainer`]. * Fine-tune a pretrained model in TensorFlow with Keras. * Fine-tune a pretrained model in native PyTorch. <a id='data-processing'></a>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_1
<Youtube id="_BZearw7f0w"/> Before you can fine-tune a pretrained model, download a dataset and prepare it for training. The previous tutorial showed you how to process data for training, and now you get an opportunity to put those skills to the test! Begin by loading the [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full) dataset: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("yelp_review_full") >>> dataset["train"][100] {'label': 0, 'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'} ``` As you now know, you need a tokenizer to process the text and include a padding and truncation strategy to handle any variable sequence lengths. To process your dataset in one step, use 🤗 Datasets [`map`](https://huggingface.co/docs/datasets/process#map) method to apply a preprocessing function over the entire dataset: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") >>> def tokenize_function(examples): ... return tokenizer(examples["text"], padding="max_length", truncation=True) >>> tokenized_datasets = dataset.map(tokenize_function, batched=True) ``` If you like, you can create a smaller subset of the full dataset to fine-tune on to reduce the time it takes: ```py >>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) >>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) ``` <a id='trainer'></a>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_2
At this point, you should follow the section corresponding to the framework you want to use. You can use the links in the right sidebar to jump to the one you want - and if you want to hide all of the content for a given framework, just use the button at the top-right of that framework's block! <frameworkcontent> <pt> <Youtube id="nvBXf7s7vTI"/>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_3
🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] API supports a wide range of training options and features such as logging, gradient accumulation, and mixed precision. Start by loading your model and specify the number of expected labels. From the Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields), you know there are five labels. By default, the weights are loaded in full precision (torch.float32) regardless of the actual data type the weights are stored in such as torch.float16. Set `torch_dtype="auto"` to load the weights in the data type defined in a model's `config.json` file to automatically load the most memory-optimal data type. ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5, torch_dtype="auto") ``` <Tip> You will see a warning about some of the pretrained weights not being used and some weights being randomly initialized. Don't worry, this is completely normal! The pretrained head of the BERT model is discarded, and replaced with a randomly initialized classification head. You will fine-tune this new model head on your sequence classification task, transferring the knowledge of the pretrained model to it. </Tip>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_4
Next, create a [`TrainingArguments`] class which contains all the hyperparameters you can tune as well as flags for activating different training options. For this tutorial you can start with the default training [hyperparameters](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments), but feel free to experiment with these to find your optimal settings. Specify where to save the checkpoints from your training: ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments(output_dir="test_trainer") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_5
[`Trainer`] does not automatically evaluate model performance during training. You'll need to pass [`Trainer`] a function to compute and report metrics. The [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) library provides a simple [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) function you can load with the [`evaluate.load`] (see this [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) for more information) function: ```py >>> import numpy as np >>> import evaluate >>> metric = evaluate.load("accuracy") ``` Call [`~evaluate.compute`] on `metric` to calculate the accuracy of your predictions. Before passing your predictions to `compute`, you need to convert the logits to predictions (remember all 🤗 Transformers models return logits): ```py >>> def compute_metrics(eval_pred): ... logits, labels = eval_pred ... predictions = np.argmax(logits, axis=-1) ... return metric.compute(predictions=predictions, references=labels) ``` If you'd like to monitor your evaluation metrics during fine-tuning, specify the `eval_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch: ```py >>> from transformers import TrainingArguments, Trainer >>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch") ```
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_6
Create a [`Trainer`] object with your model, training arguments, training and test datasets, and evaluation function: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` Then fine-tune your model by calling [`~transformers.Trainer.train`]: ```py >>> trainer.train() ``` </pt> <tf> <a id='keras'></a> <Youtube id="rnTGBy2ax1c"/>
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_7
You can also train 🤗 Transformers models in TensorFlow with the Keras API!
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/training.md
.md
11_8