Daniel van Strien's picture

Daniel van Strien PRO

davanstrien

AI & ML interests

Machine Learning Librarian

Recent Activity

liked a model 38 minutes ago
internlm/internlm3-8b-instruct
updated a dataset about 4 hours ago
data-is-better-together/fineweb-c-progress
updated a dataset about 8 hours ago
librarian-bots/dataset_cards_with_metadata
View all activity

Articles

Organizations

Hugging Face's profile picture Notebooks-explorers's profile picture Living with Machines's profile picture BigScience Workshop's profile picture Spaces-explorers's profile picture BigScience Catalogue Data's profile picture Hacks/Hackers's profile picture BigScience: LMs for Historical Texts's profile picture flyswot's profile picture Cohere For AI's profile picture Webhooks Explorers (BETA)'s profile picture HuggingFaceM4's profile picture Open Access AI Collective's profile picture HF Canonical Model Maintainers's profile picture BigLAM: BigScience Libraries, Archives and Museums's profile picture Hugging Face OSS Metrics's profile picture ImageIN's profile picture Stable Diffusion Bias Eval's profile picture Librarian Bots's profile picture Blog-explorers's profile picture Hacktoberfest 2023's profile picture Hugging Face TB Research's profile picture geospatial's profile picture HF-IA-archiving's profile picture 2A2I Legacy Models & Datasets's profile picture testy's profile picture DIBT-for-Klingon's profile picture Wikimedia Movement's profile picture DIBT-for-Esperanto's profile picture Journalists on Hugging Face's profile picture PleIAs's profile picture Persian AI Community's profile picture Argilla Explorers's profile picture HuggingFaceFW's profile picture Data Is Better Together's profile picture Social Post Explorers's profile picture OMOTO AI's profile picture academic-datasets's profile picture HuggingFaceFW-Dev's profile picture Hugging Face Discord Community's profile picture UCSF-JHU Opioid Industry Documents Archive's profile picture Dataset Tools's profile picture PDFPages's profile picture dibt-private's profile picture Data Is Better Together Contributor's profile picture Bluesky Community's profile picture

davanstrien's activity

reacted to AdinaY's post with ๐Ÿ”ฅ about 21 hours ago
view post
Post
1195
MiniCPM-o2.6 ๐Ÿ”ฅ an end-side multimodal LLMs released by OpenBMB from the Chinese community
Model: openbmb/MiniCPM-o-2_6
โœจ Real-time English/Chinese conversation, emotion control and ASR/STT
โœจ Real-time video/audio understanding
โœจ Processes up to 1.8M pixels, leads OCRBench & supports 30+ languages
reacted to their post with ๐Ÿค— 1 day ago
view post
Post
2351
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

๐Ÿ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

๐ŸŒ Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
ยท
posted an update 1 day ago
view post
Post
2351
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

๐Ÿ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

๐ŸŒ Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
ยท
posted an update 5 days ago
view post
Post
2007
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
ยท
reacted to albertvillanova's post with ๐Ÿ‘€ 8 days ago
replied to their post 19 days ago
view reply

Thanks to the hard work of @ivykopal , the first 1,000 annotations for Slovak have been completed! Make sure to give Ivan a follow :)

reacted to nicolay-r's post with โค๏ธ 19 days ago
view post
Post
2113
๐Ÿ“ข Deligted to share the most recent milestone on quick deployment of Named Entity Recognition (NER) in Gen-AI powered systems.

Releasing the bulk-ner 0.25.0 which represent a tiny framework that would save you time for deploing NER with any model.

๐Ÿ’Ž Why is this important? In the era of GenAI the handling out textual output might be challenging. Instead, recognizing named-entities via domain-oriented systems for your donwstream LLM would be preferable option.

๐Ÿ“ฆ: https://pypi.org/project/bulk-ner/0.25.0/
๐ŸŒŸ: https://github.com/nicolay-r/bulk-ner

I noticed that the direct adaptaion of the LM for NER would result in spending signifcant amount of time on formatting your texts according to the NER-model needs.
In particular:
1. Processing CONLL format with B-I-O tags from model outputs
2. Input trimming: long input content might not be completely fitted

To cope with these problems, in version 0.25.0 I made a huge steps forward by providing:
โœ… ๐Ÿ Python API support: see screenshot below for a quick deployment (see screenshot below ๐Ÿ“ธ)
โœ… ๐Ÿชถ No-string: dependencies are now clear, so it is purely Python implementation for API calls.
โœ… ๐Ÿ‘Œ Simplified output formatting: we use lists to represent texts with inner lists that refer to annotated objects (see screenshot below ๐Ÿ“ธ)

๐Ÿ“’ We have a colab for a quick start here (or screenshot for bash / Python API ๐Ÿ“ธ)
https://colab.research.google.com/github/nicolay-r/ner-service/blob/main/NER_annotation_service.ipynb

๐Ÿ‘ The code for pipeline deployment is taken from the AREkit project:
https://github.com/nicolay-r/AREkit
reacted to their post with โค๏ธ 19 days ago
view post
Post
3158
๐Ÿ‡ธ๐Ÿ‡ฐ Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
ยท
posted an update 19 days ago
view post
Post
3158
๐Ÿ‡ธ๐Ÿ‡ฐ Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
ยท
posted an update 26 days ago
view post
Post
1765
Introducing FineWeb-C ๐ŸŒ๐ŸŽ“, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! ๐ŸŒ

data-is-better-together/fineweb-c
reacted to anton-l's post with ๐Ÿ”ฅ 27 days ago
view post
Post
2208
Introducing ๐Ÿ“๐…๐ข๐ง๐ž๐Œ๐š๐ญ๐ก: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
๐Ÿ› ๏ธ carefully extracting math data from Common Crawl;
๐Ÿ”Ž iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! ๐Ÿš€
Weโ€™re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
reacted to stefan-it's post with โค๏ธ about 1 month ago
view post
Post
1259
My latest project is the outcome of the last 2+ years working with TPUs from the amazing TPU Research Cloud (TRC) program and training Encoder-only LMs with the TensorFlow Model Garden library.

๐Ÿ‘‰ Link: https://github.com/stefan-it/model-garden-lms

An overview of some features:

- Cheatsheet for setting-up a TPU VM Pod (with all necessary dependencies) to pretrain LMs with TF Model Garden
- Conversion scripts that convert TF Model Garden weights to Hugging Face Transformers-compatible models
- Supported architectures include BERT, BERT with Token Dropping and TEAMS

I also released BERT-based models pretrained on the great Hugging Face FineWeb and FineWeb-Edu datasets (10BT subset). With more to come!

๐Ÿ‘‰ Model Hub Link: https://huggingface.co/model-garden-lms

If you find these resources useful, please give them a like!

Made from Bavarian Oberland with โค๏ธ and ๐Ÿฅจ.
reacted to davidberenstein1957's post with ๐Ÿ”ฅ about 1 month ago
view post
Post
2075
Open Preference Dataset for Text-to-Image Generation by the ๐Ÿค— Community

Open Image Preferences is an Apache 2.0 licensed dataset for text-to-image generation. This dataset contains 10K text-to-image preference pairs across common image generation categories, while using different model families and varying prompt complexities.

https://huggingface.co/blog/image-preferences
reacted to thomwolf's post with ๐Ÿš€ about 1 month ago
view post
Post
4793
We are proud to announce HuggingFaceFW/fineweb-2: A sparkling update to HuggingFaceFW/fineweb with 1000s of ๐Ÿ—ฃ๏ธlanguages.

We applied the same data-driven approach that led to SOTA English performance in๐Ÿท FineWeb to thousands of languages.

๐Ÿฅ‚ FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.

The dataset is released under the permissive ๐Ÿ“œ ODC-By 1.0 license, and the ๐Ÿ’ป code to reproduce it and our evaluations is public.

We will very soon announce a big community project, and are working on a ๐Ÿ“ blogpost walking you through the entire dataset creation process. Stay tuned!

In the mean time come ask us question on our chat place: HuggingFaceFW/discussion

H/t @guipenedo @hynky @lvwerra as well as @vsabolcec Bettina Messmer @negar-foroutan and @mjaggi
  • 2 replies
ยท
posted an update about 2 months ago
view post
Post
512
Increasingly, LLMs are becoming very useful for helping scale annotation tasks, i.e. labelling and filtering. When combined with the structured generation, this can be a very scalable way of doing some pre-annotation without requiring a large team of human annotators.

However, there are quite a few cases where it still doesn't work well. This is a nice paper looking at the limitations of LLM as an annotator for Low Resource Languages: On Limitations of LLM as Annotator for Low Resource Languages (2411.17637).

Humans will still have an important role in the loop to help improve models for all languages (and domains).
reacted to andito's post with ๐Ÿ”ฅ about 2 months ago
view post
Post
1837
SmolVLM speeding locally on a laptop thanks to mlx-vlm and
@Gradio ! Try it with two lines:
pip install git+https://github.com/andimarafioti/mlx-vlm.git@stream-generate-fix
python -m mlx_vlm.chat_ui --model mlx-community/SmolVLM-Instruct-8bit

Gotta love the MLX community! Big thanks to @pcuenq and @prince_canuma !
reacted to MohamedRashad's post with ๐Ÿš€ about 2 months ago
reacted to AdinaY's post with ๐Ÿค— about 2 months ago
view post
Post
1122
Zhipu AI, the Chinese generative AI startup behind CogVideo, just launched their first productized AI Agent - AutoGLM ๐Ÿ”ฅ
๐Ÿ‘‰ https://agent.aminer.cn

With simple text or voice commands, it:
โœจ Simulates phone operations effortlessly
โœจ Autonomously handles 50+ step tasks
โœจ Seamlessly operates across apps

Powered by Zhipu's "Decoupled Interface" and "Self-Evolving Learning Framework" to achieve major performance gains in Phone Use and Web Browser Use!

Meanwhile, GLM4-Edge is now on Hugging Face hub๐Ÿš€
๐Ÿ‘‰ THUDM/glm-edge-6743283c5809de4a7b9e0b8b
Packed with advanced dialogue + multimodal models:
๐Ÿ“ฑ 1.5B / 2B models: Built for mobile & in-car systems
๐Ÿ’ป 4B / 5B models: Optimized for PCs