--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: scandi-fine-web-cleaner results: [] datasets: - data-is-better-together/fineweb-c language: - sv - da --- # scandi-fine-web-cleaner This model is a demo classifier for identifying problematic content (incorrect language, garbled text) in Danish and Swedish web text. It was created as part of a [blog post](https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html) exploring how to filter web data using community annotations. The model was created by fine-tuning [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [data-is-better-together/fineweb-c](https://huggingface.co/datasets/data-is-better-together/fineweb-c) dataset. It achieves the following results on the evaluation set: - Precision: 0.9524 (95.2%) - Recall: 0.7018 (70.2%) - F1: 0.8081 - AUC-ROC: 0.9648 ## Intended uses & limitations The model is intended to be used as a preliminary filter for web text to help improve annotation efficiency. It has only been tested on Danish and Swedish content. The high precision (95.2%) means false positives are rare, while the recall (70.2%) indicates it catches most problematic content. [blog]: ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Auc Roc | Balanced Accuracy | Average Precision | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:-------:|:-----------------:|:-----------------:| | 0.3165 | 1.0 | 100 | 0.2333 | 0.95 | 0.6667 | 0.7835 | 0.8099 | 0.8304 | 0.7721 | | 0.1929 | 2.0 | 200 | 0.1359 | 0.9130 | 0.7368 | 0.8155 | 0.9778 | 0.8626 | 0.9105 | | 0.1775 | 3.0 | 300 | 0.2245 | 0.9268 | 0.6667 | 0.7755 | 0.9481 | 0.8290 | 0.8721 | | 0.1553 | 4.0 | 400 | 0.1816 | 0.9524 | 0.7018 | 0.8081 | 0.9648 | 0.8480 | 0.8906 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0