nielsr HF staff commited on
Commit
060ed34
·
1 Parent(s): fc15262

Improve README

Browse files
Files changed (1) hide show
  1. README.md +25 -9
README.md CHANGED
@@ -30,6 +30,8 @@ The model is trained using a "bipartite matching loss": one compares the predict
30
 
31
  DETR can be naturally extended to perform panoptic segmentation, by adding a mask head on top of the decoder outputs.
32
 
 
 
33
  ## Intended uses & limitations
34
 
35
  You can use the raw model for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
@@ -39,22 +41,36 @@ You can use the raw model for panoptic segmentation. See the [model hub](https:/
39
  Here is how to use this model:
40
 
41
  ```python
42
- from transformers import DetrFeatureExtractor, DetrForSegmentation
43
- from PIL import Image
44
  import requests
 
 
 
45
 
46
- url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
 
 
 
47
  image = Image.open(requests.get(url, stream=True).raw)
48
 
49
- feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
50
- model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')
51
 
 
52
  inputs = feature_extractor(images=image, return_tensors="pt")
 
 
53
  outputs = model(**inputs)
54
- # model predicts COCO classes, bounding boxes, and masks
55
- logits = outputs.logits
56
- bboxes = outputs.pred_boxes
57
- masks = outputs.pred_masks
 
 
 
 
 
 
58
  ```
59
 
60
  Currently, both the feature extractor and model support PyTorch.
 
30
 
31
  DETR can be naturally extended to perform panoptic segmentation, by adding a mask head on top of the decoder outputs.
32
 
33
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/detr_architecture.png)
34
+
35
  ## Intended uses & limitations
36
 
37
  You can use the raw model for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models.
 
41
  Here is how to use this model:
42
 
43
  ```python
44
+ import io
 
45
  import requests
46
+ from PIL import Image
47
+ import torch
48
+ import numpy
49
 
50
+ from transformers import DetrFeatureExtractor, DetrForSegmentation
51
+ from transformers.models.detr.feature_extraction_detr import rgb_to_id
52
+
53
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
54
  image = Image.open(requests.get(url, stream=True).raw)
55
 
56
+ feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
57
+ model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
58
 
59
+ # prepare image for the model
60
  inputs = feature_extractor(images=image, return_tensors="pt")
61
+
62
+ # forward pass
63
  outputs = model(**inputs)
64
+
65
+ # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
66
+ processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
67
+ result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
68
+
69
+ # the segmentation is stored in a special-format png
70
+ panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
71
+ panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
72
+ # retrieve the ids corresponding to each mask
73
+ panoptic_seg_id = rgb_to_id(panoptic_seg)
74
  ```
75
 
76
  Currently, both the feature extractor and model support PyTorch.