Remap dense layer parameter naming
Browse files- 2_Dense/pytorch_model.bin +2 -2
- convert.py +25 -0
2_Dense/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97720d328d1a1a4168acac9f3d3c19c1809def87e67f2438fc06cd0235d7a5b0
|
3 |
+
size 9438013
|
convert.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import sys
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load and keep backup
|
9 |
+
m_input = torch.load("2_Dense/pytorch_model.bin")
|
10 |
+
torch.save(m_input, "2_Dense/pytorch_model.bin.bak")
|
11 |
+
|
12 |
+
# Mappings
|
13 |
+
rename = {"layer.weight": "linear.weight"}
|
14 |
+
|
15 |
+
# Output
|
16 |
+
m_output = OrderedDict()
|
17 |
+
for key, params in m_input.items():
|
18 |
+
dst = key
|
19 |
+
if key in rename:
|
20 |
+
print(f"Mapping {key} to {rename[key]}", file=sys.stderr)
|
21 |
+
dst = rename[key]
|
22 |
+
|
23 |
+
m_output[dst] = params
|
24 |
+
|
25 |
+
torch.save(m_output, "2_Dense/pytorch_model.bin")
|