manzilzaheer
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
model-index:
|
3 |
- name: google/Gemma-Embeddings-v1.0
|
4 |
results:
|
@@ -352,6 +357,21 @@ model-index:
|
|
352 |
value: 84.821
|
353 |
task:
|
354 |
type: Retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
- dataset:
|
356 |
config: default
|
357 |
name: MTEB ArxivClusteringS2S (default)
|
@@ -8627,13 +8647,9 @@ model-index:
|
|
8627 |
type: PairClassification
|
8628 |
tags:
|
8629 |
- mteb
|
8630 |
-
license: gemma
|
8631 |
-
language:
|
8632 |
-
- en
|
8633 |
-
base_model:
|
8634 |
-
- google/gemma-2-9b-it
|
8635 |
---
|
8636 |
|
|
|
8637 |
# Gemma Embeddings v1.0
|
8638 |
|
8639 |
GemmaEmbed is a dense-vector embedding model, trained especially for retrieval. As of December 12, 2024, GemmaEmbed achieves the #1 position overall on the MTEB leaderboard, with a score of 72.72.
|
@@ -8665,5 +8681,4 @@ We use the [BGE-EN-ICL training data](https://huggingface.co/datasets/cfli/bge-f
|
|
8665 |
* Seungyeon Kim
|
8666 |
* Andrew McCallum
|
8667 |
* Rob Fergus
|
8668 |
-
* Manzil Zaheer
|
8669 |
-
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- google/gemma-2-9b-it
|
6 |
+
license: gemma
|
7 |
model-index:
|
8 |
- name: google/Gemma-Embeddings-v1.0
|
9 |
results:
|
|
|
357 |
value: 84.821
|
358 |
task:
|
359 |
type: Retrieval
|
360 |
+
- dataset:
|
361 |
+
config: default
|
362 |
+
name: MTEB ArxivClusteringP2P (default)
|
363 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
364 |
+
split: test
|
365 |
+
type: mteb/arxiv-clustering-p2p
|
366 |
+
metrics:
|
367 |
+
- type: v_measure
|
368 |
+
value: 54.8264
|
369 |
+
- type: v_measure_std
|
370 |
+
value: 14.505199999999999
|
371 |
+
- type: main_score
|
372 |
+
value: 54.8264
|
373 |
+
task:
|
374 |
+
type: Clustering
|
375 |
- dataset:
|
376 |
config: default
|
377 |
name: MTEB ArxivClusteringS2S (default)
|
|
|
8647 |
type: PairClassification
|
8648 |
tags:
|
8649 |
- mteb
|
|
|
|
|
|
|
|
|
|
|
8650 |
---
|
8651 |
|
8652 |
+
|
8653 |
# Gemma Embeddings v1.0
|
8654 |
|
8655 |
GemmaEmbed is a dense-vector embedding model, trained especially for retrieval. As of December 12, 2024, GemmaEmbed achieves the #1 position overall on the MTEB leaderboard, with a score of 72.72.
|
|
|
8681 |
* Seungyeon Kim
|
8682 |
* Andrew McCallum
|
8683 |
* Rob Fergus
|
8684 |
+
* Manzil Zaheer
|
|