haijunlv commited on
Commit
b7354fb
·
verified ·
1 Parent(s): efa91a9

Upload 2 files

Browse files
Files changed (2) hide show
  1. LICENSE.txt +201 -0
  2. README.md +197 -22
LICENSE.txt ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2023-2024 Shanghai AI Laboratory
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
4
  # InternLM
5
 
@@ -89,7 +90,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
89
  model_dir = "internlm/internlm3-8b-instruct"
90
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
91
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
92
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
93
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
94
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
95
  # pip install -U bitsandbytes
@@ -104,7 +105,7 @@ messages = [
104
  {"role": "system", "content": system_prompt},
105
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
106
  ]
107
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
108
 
109
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
110
 
@@ -113,7 +114,7 @@ generated_ids = [
113
  ]
114
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
115
  print(prompt)
116
- response = tokenizer.batch_decode(generated_ids)[0]
117
  print(response)
118
  ```
119
 
@@ -160,7 +161,47 @@ Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.i
160
 
161
  #### Ollama inference
162
 
163
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
  #### vLLM inference
166
 
@@ -168,7 +209,11 @@ We are still working on merging the PR(https://github.com/vllm-project/vllm/pull
168
 
169
  ```python
170
  git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
171
- pip install -e .
 
 
 
 
172
  ```
173
 
174
  inference code:
@@ -270,7 +315,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
270
  model_dir = "internlm/internlm3-8b-instruct"
271
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
272
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
273
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
274
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
275
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
276
  # pip install -U bitsandbytes
@@ -282,7 +327,7 @@ messages = [
282
  {"role": "system", "content": thinking_system_prompt},
283
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
284
  ]
285
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
286
 
287
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
288
 
@@ -291,7 +336,7 @@ generated_ids = [
291
  ]
292
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
293
  print(prompt)
294
- response = tokenizer.batch_decode(generated_ids)[0]
295
  print(response)
296
  ```
297
  #### LMDeploy inference
@@ -321,14 +366,56 @@ print(response)
321
 
322
  #### Ollama inference
323
 
324
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
 
326
  #### vLLM inference
327
 
328
  We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
329
  ```python
330
  git clone https://github.com/RunningLeon/vllm.git
331
- pip install -e .
 
 
 
 
332
  ```
333
 
334
  inference code
@@ -438,7 +525,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
438
  model_dir = "internlm/internlm3-8b-instruct"
439
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
440
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
441
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
442
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
443
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
444
  # pip install -U bitsandbytes
@@ -453,7 +540,7 @@ messages = [
453
  {"role": "system", "content": system_prompt},
454
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
455
  ]
456
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
457
 
458
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
459
 
@@ -462,7 +549,7 @@ generated_ids = [
462
  ]
463
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
464
  print(prompt)
465
- response = tokenizer.batch_decode(generated_ids)[0]
466
  print(response)
467
  ```
468
 
@@ -510,7 +597,49 @@ curl http://localhost:23333/v1/chat/completions \
510
 
511
  ##### Ollama 推理
512
 
513
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514
 
515
  ##### vLLM 推理
516
 
@@ -518,7 +647,11 @@ TODO
518
 
519
  ```python
520
  git clone https://github.com/RunningLeon/vllm.git
521
- pip install -e .
 
 
 
 
522
  ```
523
 
524
  推理代码
@@ -619,7 +752,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
619
  model_dir = "internlm/internlm3-8b-instruct"
620
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
621
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
622
- model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
623
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
624
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
625
  # pip install -U bitsandbytes
@@ -631,7 +764,7 @@ messages = [
631
  {"role": "system", "content": thinking_system_prompt},
632
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
633
  ]
634
- tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
635
 
636
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
637
 
@@ -640,7 +773,7 @@ generated_ids = [
640
  ]
641
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
642
  print(prompt)
643
- response = tokenizer.batch_decode(generated_ids)[0]
644
  print(response)
645
  ```
646
  ##### LMDeploy 推理
@@ -670,7 +803,45 @@ print(response)
670
 
671
  ##### Ollama 推理
672
 
673
- TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674
 
675
  ##### vLLM 推理
676
 
@@ -678,7 +849,11 @@ TODO
678
 
679
  ```python
680
  git clone https://github.com/RunningLeon/vllm.git
681
- pip install -e .
 
 
 
 
682
  ```
683
 
684
  推理代码
@@ -728,4 +903,4 @@ print(outputs)
728
  archivePrefix={arXiv},
729
  primaryClass={cs.CL}
730
  }
731
- ```
 
1
  ---
2
+ pipeline_tag: text-generation
3
+ license: other
4
  ---
5
  # InternLM
6
 
 
90
  model_dir = "internlm/internlm3-8b-instruct"
91
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
92
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
93
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
94
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
95
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
96
  # pip install -U bitsandbytes
 
105
  {"role": "system", "content": system_prompt},
106
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
107
  ]
108
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
109
 
110
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
111
 
 
114
  ]
115
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
116
  print(prompt)
117
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
118
  print(response)
119
  ```
120
 
 
161
 
162
  #### Ollama inference
163
 
164
+ First install ollama,
165
+
166
+ ```python
167
+ # install ollama
168
+ curl -fsSL https://ollama.com/install.sh | sh
169
+ # fetch model
170
+ ollama pull internlm/internlm3-8b-instruct
171
+ # install
172
+ pip install ollama
173
+ ```
174
+
175
+ inference code,
176
+
177
+ ```python
178
+ import ollama
179
+
180
+ system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
181
+ - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
182
+ - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
183
+
184
+ messages = [
185
+ {
186
+ "role": "system",
187
+ "content": system_prompt,
188
+ },
189
+ {
190
+ "role": "user",
191
+ "content": "Please tell me five scenic spots in Shanghai"
192
+ },
193
+ ]
194
+
195
+ stream = ollama.chat(
196
+ model='internlm/internlm3-8b-instruct',
197
+ messages=messages,
198
+ stream=True,
199
+ )
200
+
201
+ for chunk in stream:
202
+ print(chunk['message']['content'], end='', flush=True)
203
+ ```
204
+
205
 
206
  #### vLLM inference
207
 
 
209
 
210
  ```python
211
  git clone -b support-internlm3 https://github.com/RunningLeon/vllm.git
212
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
213
+ cd vllm
214
+ python use_existing_torch.py
215
+ pip install -r requirements-build.txt
216
+ pip install -e . --no-build-isolatio
217
  ```
218
 
219
  inference code:
 
315
  model_dir = "internlm/internlm3-8b-instruct"
316
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
317
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
318
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
319
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
320
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
321
  # pip install -U bitsandbytes
 
327
  {"role": "system", "content": thinking_system_prompt},
328
  {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
329
  ]
330
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
331
 
332
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
333
 
 
336
  ]
337
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
338
  print(prompt)
339
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
340
  print(response)
341
  ```
342
  #### LMDeploy inference
 
366
 
367
  #### Ollama inference
368
 
369
+ First install ollama,
370
+
371
+ ```python
372
+ # install ollama
373
+ curl -fsSL https://ollama.com/install.sh | sh
374
+ # fetch model
375
+ ollama pull internlm/internlm3-8b-instruct
376
+ # install
377
+ pip install ollama
378
+ ```
379
+
380
+ inference code,
381
+
382
+ ```python
383
+ import ollama
384
+
385
+ messages = [
386
+ {
387
+ "role": "system",
388
+ "content": thinking_system_prompt,
389
+ },
390
+ {
391
+ "role": "user",
392
+ "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
393
+ },
394
+ ]
395
+
396
+ stream = ollama.chat(
397
+ model='internlm/internlm3-8b-instruct',
398
+ messages=messages,
399
+ stream=True,
400
+ )
401
+
402
+ for chunk in stream:
403
+ print(chunk['message']['content'], end='', flush=True)
404
+ ```
405
+
406
+
407
+ ####
408
 
409
  #### vLLM inference
410
 
411
  We are still working on merging the PR(https://github.com/vllm-project/vllm/pull/12037) into vLLM. In the meantime, please use the following PR link to install it manually.
412
  ```python
413
  git clone https://github.com/RunningLeon/vllm.git
414
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
415
+ cd vllm
416
+ python use_existing_torch.py
417
+ pip install -r requirements-build.txt
418
+ pip install -e . --no-build-isolatio
419
  ```
420
 
421
  inference code
 
525
  model_dir = "internlm/internlm3-8b-instruct"
526
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
527
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
528
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
529
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
530
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
531
  # pip install -U bitsandbytes
 
540
  {"role": "system", "content": system_prompt},
541
  {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
542
  ]
543
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
544
 
545
  generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)
546
 
 
549
  ]
550
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
551
  print(prompt)
552
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
553
  print(response)
554
  ```
555
 
 
597
 
598
  ##### Ollama 推理
599
 
600
+ 准备工作
601
+
602
+ ```python
603
+ # install ollama
604
+ curl -fsSL https://ollama.com/install.sh | sh
605
+ # fetch 模型
606
+ ollama pull internlm/internlm3-8b-instruct
607
+ # install python库
608
+ pip install ollama
609
+ ```
610
+
611
+ 推理代码
612
+
613
+ ```python
614
+ import ollama
615
+
616
+ system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
617
+ - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
618
+ - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
619
+
620
+ messages = [
621
+ {
622
+ "role": "system",
623
+ "content": system_prompt,
624
+ },
625
+ {
626
+ "role": "user",
627
+ "content": "Please tell me five scenic spots in Shanghai"
628
+ },
629
+ ]
630
+
631
+ stream = ollama.chat(
632
+ model='internlm/internlm3-8b-instruct',
633
+ messages=messages,
634
+ stream=True,
635
+ )
636
+
637
+ for chunk in stream:
638
+ print(chunk['message']['content'], end='', flush=True)
639
+ ```
640
+
641
+
642
+ ####
643
 
644
  ##### vLLM 推理
645
 
 
647
 
648
  ```python
649
  git clone https://github.com/RunningLeon/vllm.git
650
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
651
+ cd vllm
652
+ python use_existing_torch.py
653
+ pip install -r requirements-build.txt
654
+ pip install -e . --no-build-isolatio
655
  ```
656
 
657
  推理代码
 
752
  model_dir = "internlm/internlm3-8b-instruct"
753
  tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
754
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
755
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
756
  # (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
757
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
758
  # pip install -U bitsandbytes
 
764
  {"role": "system", "content": thinking_system_prompt},
765
  {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
766
  ]
767
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
768
 
769
  generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)
770
 
 
773
  ]
774
  prompt = tokenizer.batch_decode(tokenized_chat)[0]
775
  print(prompt)
776
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
777
  print(response)
778
  ```
779
  ##### LMDeploy 推理
 
803
 
804
  ##### Ollama 推理
805
 
806
+ 准备工作
807
+
808
+ ```python
809
+ # install ollama
810
+ curl -fsSL https://ollama.com/install.sh | sh
811
+ # fetch 模型
812
+ ollama pull internlm/internlm3-8b-instruct
813
+ # install python库
814
+ pip install ollama
815
+ ```
816
+
817
+ inference code,
818
+
819
+ ```python
820
+ import ollama
821
+
822
+ messages = [
823
+ {
824
+ "role": "system",
825
+ "content": thinking_system_prompt,
826
+ },
827
+ {
828
+ "role": "user",
829
+ "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
830
+ },
831
+ ]
832
+
833
+ stream = ollama.chat(
834
+ model='internlm/internlm3-8b-instruct',
835
+ messages=messages,
836
+ stream=True,
837
+ )
838
+
839
+ for chunk in stream:
840
+ print(chunk['message']['content'], end='', flush=True)
841
+ ```
842
+
843
+
844
+ ####
845
 
846
  ##### vLLM 推理
847
 
 
849
 
850
  ```python
851
  git clone https://github.com/RunningLeon/vllm.git
852
+ # and then follow https://docs.vllm.ai/en/latest/getting_started/installation/gpu/index.html#build-wheel-from-source to install
853
+ cd vllm
854
+ python use_existing_torch.py
855
+ pip install -r requirements-build.txt
856
+ pip install -e . --no-build-isolatio
857
  ```
858
 
859
  推理代码
 
903
  archivePrefix={arXiv},
904
  primaryClass={cs.CL}
905
  }
906
+ ```