--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: chatgpt-prompts-bart-long results: [] datasets: - fka/awesome-chatgpt-prompts --- # ChatGPT Prompt Generator This model is a fine-tuned version of [BART-large](https://huggingface.co/facebook/bart-large) on a ChatGPT prompts dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8329 - Validation Loss: 2.5015 - Epoch: 4 ## Intended uses & limitations You can use this to generate ChatGPT personas. Simply input a persona like below: ``` from transformers import BartForConditionalGeneration, BartTokenizer example_english_phrase = "photographer" batch = tokenizer(example_english_phrase, return_tensors="pt") generated_ids = model.generate(batch["input_ids"], max_new_tokens=150) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4973 | 6.3592 | 0 | | 5.3145 | 3.2640 | 1 | | 3.5899 | 2.8350 | 2 | | 3.1044 | 2.6154 | 3 | | 2.8329 | 2.5015 | 4 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2