--- license: apache-2.0 library_name: transformers.js --- ## Usage ### Python ```python import os import numpy as np from onnxruntime import InferenceSession # Tokens produced by phonemize() and tokenize() in kokoro.py tokens = [50, 157, 43, 135, 16, 53, 135, 46, 16, 43, 102, 16, 56, 156, 57, 135, 6, 16, 102, 62, 61, 16, 70, 56, 16, 138, 56, 156, 72, 56, 61, 85, 123, 83, 44, 83, 54, 16, 53, 65, 156, 86, 61, 62, 131, 83, 56, 4, 16, 54, 156, 43, 102, 53, 16, 156, 72, 61, 53, 102, 112, 16, 70, 56, 16, 138, 56, 44, 156, 76, 158, 123, 56, 16, 62, 131, 156, 43, 102, 54, 46, 16, 102, 48, 16, 81, 47, 102, 54, 16, 54, 156, 51, 158, 46, 16, 70, 16, 92, 156, 135, 46, 16, 54, 156, 43, 102, 48, 4, 16, 81, 47, 102, 16, 50, 156, 72, 64, 83, 56, 62, 16, 156, 51, 158, 64, 83, 56, 16, 44, 157, 102, 56, 16, 44, 156, 76, 158, 123, 56, 4] # Context length is 512, but leave room for the pad token 0 at the start & end assert len(tokens) <= 510, len(tokens) # Style vector based on len(tokens), ref_s has shape (1, 256) voices = np.fromfile('./voices/af.bin', dtype=np.float32).reshape(-1, 1, 256) ref_s = voices[len(tokens)] # Add the pad ids, and reshape tokens, should now have shape (1, <=512) tokens = [[0, *tokens, 0]] model_name = 'model.onnx' # Options: model.onnx, model_fp16.onnx, model_quantized.onnx, model_q8f16.onnx, model_uint8.onnx, model_uint8f16.onnx, model_q4.onnx, model_q4f16.onnx sess = InferenceSession(os.path.join('onnx', model_name)) audio = sess.run(None, dict( input_ids=tokens, style=ref_s, speed=np.ones(1, dtype=np.float32), ))[0] ``` Optionally, save the audio to a file: ``` import scipy.io.wavfile as wavfile wavfile.write('audio.wav', 24000, audio[0]) ``` ## Samples | Model | Size (MB) | Sample | |------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------| | model.onnx (fp32) | 326 | | | model_fp16.onnx (fp16) | 163 | | | model_quantized.onnx (8-bit) | 92.4 | | | model_q8f16.onnx (Mixed precision) | 86 | | | model_uint8.onnx (8-bit & mixed precision) | 177 | | | model_uint8f16.onnx (Mixed precision) | 114 | | | model_q4.onnx (4-bit matmul) | 305 | | | model_q4f16.onnx (4-bit matmul & fp16 weights) | 154 | |