|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Union |
|
|
|
from transformers import PretrainedConfig |
|
from transformers import Qwen2Config |
|
from transformers import WhisperConfig |
|
from transformers.utils import logging |
|
|
|
from .modeling_navit_siglip import SiglipVisionConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MiniCPMVSliceConfig(PretrainedConfig): |
|
model_type = "minicpmv" |
|
|
|
def __init__( |
|
self, |
|
patch_size=14, |
|
max_slice_nums=9, |
|
scale_resolution=448, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.patch_size = patch_size |
|
self.max_slice_nums = max_slice_nums |
|
self.scale_resolution = scale_resolution |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if config_dict.get("model_type") == "minicpmv": |
|
config_dict = config_dict["slice_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class ConditionalChatTTSConfig(PretrainedConfig): |
|
model_type = "conditional_chattts" |
|
|
|
def __init__( |
|
self, |
|
llm_dim: int = 2560, |
|
hidden_size: int = 768, |
|
intermediate_size: int = 3072, |
|
num_attention_heads: int = 12, |
|
num_hidden_layers: int = 20, |
|
max_position_embeddings: int = 4096, |
|
num_audio_tokens: int = 626, |
|
num_text_tokens: int = 21178, |
|
num_mel_bins: int = 100, |
|
num_vq: int = 4, |
|
use_speaker_embedding: bool = True, |
|
use_llm_hidden_state: bool = False, |
|
spk_emb_token_id: int = 21143, |
|
num_spk_embs: int = 1, |
|
audio_bos_token_id: int = 21132, |
|
text_eos_token_id: int = 21133, |
|
use_text: bool = True, |
|
streaming: bool = True, |
|
streaming_text_chunk_size: int = 10, |
|
streaming_text_reserved_len: int = 300, |
|
streaming_audio_chunk_size: int = 50, |
|
attn_implementation: str = "sdpa", |
|
use_mlp: bool = True, |
|
aug_loss_weight: bool = True, |
|
do_sample: bool = True, |
|
top_p: float = 0.7, |
|
top_k: int = 20, |
|
repetition_penalty: float = 1.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.llm_dim = llm_dim |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.max_position_embeddings = max_position_embeddings |
|
self.num_audio_tokens = num_audio_tokens |
|
self.num_text_tokens = num_text_tokens |
|
self.num_mel_bins = num_mel_bins |
|
self.num_vq = num_vq |
|
self.use_speaker_embedding = use_speaker_embedding |
|
self.use_llm_hidden_state = use_llm_hidden_state |
|
self.spk_emb_token_id = spk_emb_token_id |
|
self.num_spk_embs = num_spk_embs |
|
self.audio_bos_token_id = audio_bos_token_id |
|
self.text_eos_token_id = text_eos_token_id |
|
self.use_text = use_text |
|
self.streaming = streaming |
|
self.streaming_text_chunk_size = streaming_text_chunk_size |
|
self.streaming_text_reserved_len = streaming_text_reserved_len |
|
self.streaming_audio_chunk_size = streaming_audio_chunk_size |
|
self.attn_implementation = attn_implementation |
|
self.use_mlp = use_mlp |
|
self.aug_loss_weight = aug_loss_weight |
|
self.do_sample = do_sample |
|
self.top_p = top_p |
|
self.top_k = top_k |
|
self.repetition_penalty = repetition_penalty |
|
|
|
|
|
class MiniCPMOConfig(Qwen2Config): |
|
model_type = "minicpmo" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
default_vision_config = { |
|
"hidden_size": 1152, |
|
"image_size": 980, |
|
"intermediate_size": 4304, |
|
"model_type": "siglip", |
|
"num_attention_heads": 16, |
|
"num_hidden_layers": 27, |
|
"patch_size": 14, |
|
} |
|
|
|
def __init__( |
|
self, |
|
use_cache=True, |
|
query_num=64, |
|
image_size=448, |
|
drop_vision_last_layer=True, |
|
batch_vision_input=True, |
|
slice_config=None, |
|
vision_config=None, |
|
audio_config=None, |
|
tts_config=None, |
|
use_image_id=True, |
|
vision_batch_size=16, |
|
audio_pool_step=2, |
|
audio_chunk_length=1.0, |
|
stream_input=False, |
|
init_vision=True, |
|
init_audio=True, |
|
init_tts=True, |
|
**kwargs, |
|
): |
|
self.use_cache = use_cache |
|
self.query_num = query_num |
|
self.image_size = image_size |
|
self.drop_vision_last_layer = drop_vision_last_layer |
|
self.batch_vision_input = batch_vision_input |
|
self.use_image_id = use_image_id |
|
self.vision_batch_size = vision_batch_size |
|
self.audio_pool_step = audio_pool_step |
|
self.audio_chunk_length = audio_chunk_length |
|
self.stream_input = stream_input |
|
self.init_vision = init_vision |
|
self.init_audio = init_audio |
|
self.init_tts = init_tts |
|
|
|
if slice_config is None: |
|
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) |
|
else: |
|
self.slice_config = MiniCPMVSliceConfig(**slice_config) |
|
self.slice_mode = True |
|
|
|
|
|
if vision_config is None: |
|
self.vision_config = SiglipVisionConfig(**self.default_vision_config) |
|
logger.info("vision_config is None, using default vision config") |
|
elif isinstance(vision_config, dict): |
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
elif isinstance(vision_config, SiglipVisionConfig): |
|
self.vision_config = vision_config |
|
|
|
|
|
if audio_config is None: |
|
self.audio_config = WhisperConfig() |
|
elif isinstance(audio_config, dict): |
|
self.audio_config = WhisperConfig(**audio_config) |
|
elif isinstance(audio_config, WhisperConfig): |
|
self.audio_config = audio_config |
|
|
|
if tts_config is None: |
|
self.tts_config = ConditionalChatTTSConfig() |
|
elif isinstance(tts_config, dict): |
|
self.tts_config = ConditionalChatTTSConfig(**tts_config) |
|
elif isinstance(tts_config, ConditionalChatTTSConfig): |
|
self.tts_config = tts_config |
|
|
|
self.patch_size = self.vision_config.patch_size |
|
|
|
super().__init__(**kwargs) |
|
|