Papers
arxiv:2309.10931

A Family of Pretrained Transformer Language Models for Russian

Published on Sep 19, 2023
Authors:
,
,
,
,
,
,
,
,

Abstract

Nowadays, Transformer language models (LMs) represent a fundamental component of the NLP research methodologies and applications. However, the development of such models specifically for the Russian language has received little attention. This paper presents a collection of 13 Russian Transformer LMs based on the encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) models in multiple sizes. Access to these models is readily available via the HuggingFace platform. We provide a report of the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian natural language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we hope to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.

Community

Sign up or log in to comment

Models citing this paper 18

Browse 18 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2309.10931 in a dataset README.md to link it from this page.

Spaces citing this paper 83

Collections including this paper 1