Papers
arxiv:2404.03413

MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens

Published on Apr 4, 2024
Β· Submitted by akhaliq on Apr 5, 2024
Authors:
,
,
,
,
,

Abstract

This paper introduces MiniGPT4-Video, a multimodal Large Language Model (LLM) designed specifically for video understanding. The model is capable of processing both temporal visual and textual data, making it adept at understanding the complexities of videos. Building upon the success of MiniGPT-v2, which excelled in translating visual features into the LLM space for single images and achieved impressive results on various image-text benchmarks, this paper extends the model's capabilities to process a sequence of frames, enabling it to comprehend videos. MiniGPT4-video does not only consider visual content but also incorporates textual conversations, allowing the model to effectively answer queries involving both visual and text components. The proposed model outperforms existing state-of-the-art methods, registering gains of 4.22%, 1.13%, 20.82%, and 13.1% on the MSVD, MSRVTT, TGIF, and TVQA benchmarks respectively. Our models and code have been made publicly available here https://vision-cair.github.io/MiniGPT4-video/

Community

MiniGPT4-Video: Revolutionizing Video Understanding with Multimodal AI!

Links πŸ”—:

πŸ‘‰ Subscribe: https://www.youtube.com/@Arxflix
πŸ‘‰ Twitter: https://x.com/arxflix
πŸ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

decris cette video

decris cette video

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.03413 in a dataset README.md to link it from this page.

Spaces citing this paper 2

Collections including this paper 22