Papers
arxiv:2405.20204

Jina CLIP: Your CLIP Model Is Also Your Text Retriever

Published on May 30, 2024
· Submitted by akhaliq on May 31, 2024
#1 Paper of the day

Abstract

Contrastive Language-Image Pretraining (CLIP) is widely used to train models to align images and texts in a common embedding space by mapping them to fixed-sized vectors. These models are key to multimodal information retrieval and related tasks. However, CLIP models generally underperform in text-only tasks compared to specialized text models. This creates inefficiencies for information retrieval systems that keep separate embeddings and models for text-only and multimodal tasks. We propose a novel, multi-task contrastive training method to address this issue, which we use to train the jina-clip-v1 model to achieve the state-of-the-art performance on both text-image and text-text retrieval tasks.

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 5

Browse 5 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2405.20204 in a dataset README.md to link it from this page.

Spaces citing this paper 6

Collections including this paper 13