timeki commited on
Commit
09457a7
·
1 Parent(s): d78271b

add time measure

Browse files
climateqa/engine/chains/answer_rag.py CHANGED
@@ -7,6 +7,7 @@ from langchain_core.prompts.base import format_document
7
 
8
  from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
9
  from climateqa.engine.chains.prompts import papers_prompt_template
 
10
  from ..utils import rename_chain, pass_values
11
 
12
 
@@ -42,6 +43,7 @@ def make_rag_chain(llm):
42
  prompt = ChatPromptTemplate.from_template(answer_prompt_template)
43
  chain = ({
44
  "context":lambda x : _combine_documents(x["documents"]),
 
45
  "query":itemgetter("query"),
46
  "language":itemgetter("language"),
47
  "audience":itemgetter("audience"),
@@ -53,7 +55,6 @@ def make_rag_chain_without_docs(llm):
53
  chain = prompt | llm | StrOutputParser()
54
  return chain
55
 
56
-
57
  def make_rag_node(llm,with_docs = True):
58
 
59
  if with_docs:
@@ -63,9 +64,16 @@ def make_rag_node(llm,with_docs = True):
63
 
64
  async def answer_rag(state,config):
65
  print("---- Answer RAG ----")
 
66
 
67
  answer = await rag_chain.ainvoke(state,config)
68
- print(f"\n\nAnswer:\n{answer}")
 
 
 
 
 
 
69
  return {"answer":answer}
70
 
71
  return answer_rag
 
7
 
8
  from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
9
  from climateqa.engine.chains.prompts import papers_prompt_template
10
+ import time
11
  from ..utils import rename_chain, pass_values
12
 
13
 
 
43
  prompt = ChatPromptTemplate.from_template(answer_prompt_template)
44
  chain = ({
45
  "context":lambda x : _combine_documents(x["documents"]),
46
+ "context_length":lambda x : print("CONTEXT LENGTH : " , len(_combine_documents(x["documents"]))),
47
  "query":itemgetter("query"),
48
  "language":itemgetter("language"),
49
  "audience":itemgetter("audience"),
 
55
  chain = prompt | llm | StrOutputParser()
56
  return chain
57
 
 
58
  def make_rag_node(llm,with_docs = True):
59
 
60
  if with_docs:
 
64
 
65
  async def answer_rag(state,config):
66
  print("---- Answer RAG ----")
67
+ start_time = time.time()
68
 
69
  answer = await rag_chain.ainvoke(state,config)
70
+
71
+ end_time = time.time()
72
+ elapsed_time = end_time - start_time
73
+ print("RAG elapsed time: ", elapsed_time)
74
+ print("Answer size : ", len(answer))
75
+ # print(f"\n\nAnswer:\n{answer}")
76
+
77
  return {"answer":answer}
78
 
79
  return answer_rag