Spaces:
Running
Running
# import os | |
# import gradio as gr | |
# import time | |
# import math | |
# import logging | |
# import matplotlib.pyplot as plt | |
# import numpy as np | |
# # from lib.mock_tts import MockTTSModel | |
# from lib import format_audio_output | |
# from lib.ui_content import header_html, demo_text_info | |
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text | |
# from lib.text_utils import count_tokens | |
# from tts_model import TTSModel | |
# # Set HF_HOME for faster restarts with cached models/voices | |
# os.environ["HF_HOME"] = "/data/.huggingface" | |
# # Create TTS model instance | |
# model = TTSModel() | |
# # Configure logging | |
# logging.basicConfig(level=logging.DEBUG) | |
# # Suppress matplotlib debug messages | |
# logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
# logger = logging.getLogger(__name__) | |
# logger.debug("Starting app initialization...") | |
# model = TTSModel() | |
# def initialize_model(): | |
# """Initialize model and get voices""" | |
# if model.model is None: | |
# if not model.initialize(): | |
# raise gr.Error("Failed to initialize model") | |
# voices = model.list_voices() | |
# if not voices: | |
# raise gr.Error("No voices found. Please check the voices directory.") | |
# default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None | |
# return gr.update(choices=voices, value=default_voice) | |
# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress): | |
# # Calculate time metrics | |
# elapsed = time.time() - start_time | |
# gpu_time_left = max(0, gpu_timeout - elapsed) | |
# # Calculate chunk time more accurately | |
# prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0 | |
# chunk_time = elapsed - prev_total_time | |
# # Validate metrics before adding to state | |
# if chunk_time > 0 and tokens_per_sec >= 0: | |
# # Update progress state with validated metrics | |
# progress_state["progress"] = chunk_num / total_chunks | |
# progress_state["total_chunks"] = total_chunks | |
# progress_state["gpu_time_left"] = gpu_time_left | |
# progress_state["tokens_per_sec"].append(float(tokens_per_sec)) | |
# progress_state["rtf"].append(float(rtf)) | |
# progress_state["chunk_times"].append(chunk_time) | |
# # Only update progress display during processing | |
# progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") | |
# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)): | |
# """Handle text-to-speech generation from the Gradio UI""" | |
# try: | |
# if not text or not voice_names: | |
# raise gr.Error("Please enter text and select at least one voice") | |
# start_time = time.time() | |
# # Create progress state with explicit type initialization | |
# progress_state = { | |
# "progress": 0.0, | |
# "tokens_per_sec": [], # Initialize as empty list | |
# "rtf": [], # Initialize as empty list | |
# "chunk_times": [], # Initialize as empty list | |
# "gpu_time_left": float(gpu_timeout), # Ensure float | |
# "total_chunks": 0 | |
# } | |
# # Handle single or multiple voices | |
# if isinstance(voice_names, str): | |
# voice_names = [voice_names] | |
# # Generate speech with progress tracking using combined voice | |
# audio_array, duration, metrics = model.generate_speech( | |
# text, | |
# voice_names, | |
# speed, | |
# gpu_timeout=gpu_timeout, | |
# progress_callback=update_progress, | |
# progress_state=progress_state, | |
# progress=progress | |
# ) | |
# # Format output for Gradio | |
# audio_output, duration_text = format_audio_output(audio_array) | |
# # Create plot and metrics text outside GPU context | |
# fig, metrics_text = create_performance_plot(metrics, voice_names) | |
# return ( | |
# audio_output, | |
# fig, | |
# metrics_text | |
# ) | |
# except Exception as e: | |
# raise gr.Error(f"Generation failed: {str(e)}") | |
# def create_performance_plot(metrics, voice_names): | |
# """Create performance plot and metrics text from generation metrics""" | |
# # Clean and process the data | |
# tokens_per_sec = np.array(metrics["tokens_per_sec"]) | |
# rtf_values = np.array(metrics["rtf"]) | |
# # Calculate statistics using cleaned data | |
# median_tps = float(np.median(tokens_per_sec)) | |
# mean_tps = float(np.mean(tokens_per_sec)) | |
# std_tps = float(np.std(tokens_per_sec)) | |
# # Set y-axis limits based on data range | |
# y_min = max(0, np.min(tokens_per_sec) * 0.9) | |
# y_max = np.max(tokens_per_sec) * 1.1 | |
# # Create plot | |
# fig, ax = plt.subplots(figsize=(10, 5)) | |
# fig.patch.set_facecolor('black') | |
# ax.set_facecolor('black') | |
# # Plot data points | |
# chunk_nums = list(range(1, len(tokens_per_sec) + 1)) | |
# # Plot data points | |
# ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6) | |
# # Set y-axis limits with padding | |
# padding = 0.1 * (y_max - y_min) | |
# ax.set_ylim(max(0, y_min - padding), y_max + padding) | |
# # Add median line | |
# ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', | |
# label=f'Median: {median_tps:.1f} tokens/sec') | |
# # Style improvements | |
# ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white') | |
# ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white') | |
# ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white') | |
# ax.tick_params(axis='both', which='major', labelsize=20, colors='white') | |
# ax.spines['bottom'].set_color('white') | |
# ax.spines['top'].set_color('white') | |
# ax.spines['left'].set_color('white') | |
# ax.spines['right'].set_color('white') | |
# ax.grid(False) | |
# ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', | |
# labelcolor='white') | |
# plt.tight_layout() | |
# # Calculate average RTF from individual chunk RTFs | |
# rtf = np.mean(rtf_values) | |
# # Prepare metrics text | |
# metrics_text = ( | |
# f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" + | |
# f"Real-time Factor: {rtf:.3f}\n" + | |
# f"Real Time Speed: {int(1/rtf)}x\n" + | |
# f"Processing Time: {int(metrics['total_time'])}s\n" + | |
# f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" + | |
# f"Voices: {', '.join(voice_names)}" | |
# ) | |
# return fig, metrics_text | |
# # Create Gradio interface | |
# with gr.Blocks(title="Kokoro TTS Demo", css=""" | |
# .equal-height { | |
# min-height: 400px; | |
# display: flex; | |
# flex-direction: column; | |
# } | |
# .token-label { | |
# font-size: 1rem; | |
# margin-bottom: 0.3rem; | |
# text-align: center; | |
# padding: 0.2rem 0; | |
# } | |
# .token-count { | |
# color: #4169e1; | |
# } | |
# """) as demo: | |
# gr.HTML(header_html) | |
# with gr.Row(): | |
# # Column 1: Text Input and Book Selection | |
# with gr.Column(elem_classes="equal-height"): | |
# # Book selection | |
# books = get_available_books() | |
# book_dropdown = gr.Dropdown( | |
# label="Select Book", | |
# choices=[book['label'] for book in books], | |
# value=books[0]['label'] if books else None, | |
# type="value", | |
# allow_custom_value=True | |
# ) | |
# # Initialize chapters for first book | |
# initial_book = books[0]['value'] if books else None | |
# initial_chapters = [] | |
# if initial_book: | |
# book_path = os.path.join("texts/processed", initial_book) | |
# _, chapters = get_book_info(book_path) | |
# initial_chapters = [ch['title'] for ch in chapters] | |
# # Chapter selection with initial chapters | |
# chapter_dropdown = gr.Dropdown( | |
# label="Select Chapter", | |
# choices=initial_chapters, | |
# value=initial_chapters[0] if initial_chapters else None, | |
# type="value", | |
# allow_custom_value=True | |
# ) | |
# lab_tps = 175 | |
# lab_rts = 50 | |
# # Text input area with initial chapter text | |
# initial_text = "" | |
# if initial_chapters and initial_book: | |
# book_path = os.path.join("texts/processed", initial_book) | |
# _, chapters = get_book_info(book_path) | |
# if chapters: | |
# initial_text = get_chapter_text(book_path, chapters[0]['id']) | |
# tokens = count_tokens(initial_text) | |
# time_estimate = math.ceil(tokens / lab_tps) | |
# output_estimate = (time_estimate * lab_rts)//60 | |
# initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>' | |
# else: | |
# initial_label = '<div class="token-label"></div>' | |
# else: | |
# initial_label = '<div class="token-label"></div>' | |
# def update_text_label(text): | |
# if not text: | |
# return '<div class="token-label"></div>' | |
# tokens = count_tokens(text) | |
# time_estimate = math.ceil(tokens / lab_tps) | |
# output_estimate = (time_estimate * lab_rts)//60 | |
# return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>' | |
# text_input = gr.TextArea( | |
# label=None, | |
# placeholder="Enter text here, select a chapter, or upload a .txt file", | |
# value=initial_text, | |
# lines=8, | |
# max_lines=14, | |
# show_label=False, | |
# show_copy_button=True # Add copy button for convenience | |
# ) | |
# clear_btn = gr.Button("Clear Text", variant="secondary") | |
# label_html = gr.HTML(initial_label) | |
# def clear_text(): | |
# return "", '<div class="token-label"></div>' | |
# clear_btn.click( | |
# fn=clear_text, | |
# outputs=[text_input, label_html] | |
# ) | |
# # Update label whenever text changes | |
# text_input.change( | |
# fn=update_text_label, | |
# inputs=[text_input], | |
# outputs=[label_html], | |
# trigger_mode="always_last" | |
# ) | |
# def update_chapters(book_name): | |
# if not book_name: | |
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>' | |
# # Find the corresponding book file | |
# book_file = next((book['value'] for book in books if book['label'] == book_name), None) | |
# if not book_file: | |
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>' | |
# book_path = os.path.join("texts/processed", book_file) | |
# book_title, chapters = get_book_info(book_path) | |
# # Create simple choices list of chapter titles | |
# chapter_choices = [ch['title'] for ch in chapters] | |
# # Set initial chapter text when book is selected | |
# initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else "" | |
# if initial_text: | |
# tokens = count_tokens(initial_text) | |
# time_estimate = math.ceil(tokens / 150 / 10) * 10 | |
# label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
# else: | |
# label = '<div class="token-label"></div>' | |
# return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label | |
# def load_chapter_text(book_name, chapter_title): | |
# if not book_name or not chapter_title: | |
# return "", '<div class="token-label"></div>' | |
# # Find the corresponding book file | |
# book_file = next((book['value'] for book in books if book['label'] == book_name), None) | |
# if not book_file: | |
# return "", '<div class="token-label"></div>' | |
# book_path = os.path.join("texts/processed", book_file) | |
# # Get all chapters and find the one matching the title | |
# _, chapters = get_book_info(book_path) | |
# for ch in chapters: | |
# if ch['title'] == chapter_title: | |
# text = get_chapter_text(book_path, ch['id']) | |
# tokens = count_tokens(text) | |
# time_estimate = math.ceil(tokens / 150 / 10) * 10 | |
# return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
# return "", '<div class="token-label"></div>' | |
# # Set up event handlers for book/chapter selection | |
# book_dropdown.change( | |
# fn=update_chapters, | |
# inputs=[book_dropdown], | |
# outputs=[chapter_dropdown, text_input, label_html] | |
# ) | |
# chapter_dropdown.change( | |
# fn=load_chapter_text, | |
# inputs=[book_dropdown, chapter_dropdown], | |
# outputs=[text_input, label_html] | |
# ) | |
# # Column 2: Controls | |
# with gr.Column(elem_classes="equal-height"): | |
# file_input = gr.File( | |
# label="Upload .txt file", | |
# file_types=[".txt"], | |
# type="binary" | |
# ) | |
# def load_text_from_file(file_bytes): | |
# if file_bytes is None: | |
# return None, '<div class="token-label"></div>' | |
# try: | |
# text = file_bytes.decode('utf-8') | |
# tokens = count_tokens(text) | |
# time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds | |
# return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>' | |
# except Exception as e: | |
# raise gr.Error(f"Failed to read file: {str(e)}") | |
# file_input.change( | |
# fn=load_text_from_file, | |
# inputs=[file_input], | |
# outputs=[text_input, label_html] | |
# ) | |
# with gr.Group(): | |
# voice_dropdown = gr.Dropdown( | |
# label="Voice(s)", | |
# choices=[], # Start empty, will be populated after initialization | |
# value=None, | |
# allow_custom_value=True, | |
# multiselect=True | |
# ) | |
# # Add refresh button to manually update voice list | |
# refresh_btn = gr.Button("🔄 Refresh Voices", size="sm") | |
# speed_slider = gr.Slider( | |
# label="Speed", | |
# minimum=0.5, | |
# maximum=2.0, | |
# value=1.0, | |
# step=0.1 | |
# ) | |
# gpu_timeout_slider = gr.Slider( | |
# label="GPU Timeout (seconds)", | |
# minimum=15, | |
# maximum=120, | |
# value=90, | |
# step=1, | |
# info="Maximum time allowed for GPU processing" | |
# ) | |
# submit_btn = gr.Button("Generate Speech", variant="primary") | |
# # Column 3: Output | |
# with gr.Column(elem_classes="equal-height"): | |
# audio_output = gr.Audio( | |
# label="Generated Speech", | |
# type="numpy", | |
# format="wav", | |
# autoplay=False | |
# ) | |
# progress_bar = gr.Progress(track_tqdm=False) | |
# metrics_text = gr.Textbox( | |
# label="Performance Summary", | |
# interactive=False, | |
# lines=5 | |
# ) | |
# metrics_plot = gr.Plot( | |
# label="Processing Metrics", | |
# show_label=True, | |
# format="png" # Explicitly set format to PNG which is supported by matplotlib | |
# ) | |
# # Set up event handlers | |
# refresh_btn.click( | |
# fn=initialize_model, | |
# outputs=[voice_dropdown] | |
# ) | |
# submit_btn.click( | |
# fn=generate_speech_from_ui, | |
# inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider], | |
# outputs=[audio_output, metrics_plot, metrics_text], | |
# show_progress=True | |
# ) | |
# # Add text analysis info | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown(demo_text_info) | |
# # Initialize voices on load | |
# demo.load( | |
# fn=initialize_model, | |
# outputs=[voice_dropdown] | |
# ) | |
# # Launch the app | |
# if __name__ == "__main__": | |
# demo.launch() | |