Tonic commited on
Commit
21fd64b
·
unverified ·
1 Parent(s): c47030c

add dependencies

Browse files
Files changed (2) hide show
  1. app.py +8 -4
  2. requirements.txt +2 -0
app.py CHANGED
@@ -1,6 +1,10 @@
1
  import gradio as gr
2
- # import subprocess # 🥲
3
-
 
 
 
 
4
  # subprocess.run(
5
  # "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git",
6
  # shell=True,
@@ -15,6 +19,7 @@ import copy
15
  import warnings
16
  from decord import VideoReader, cpu
17
  import numpy as np
 
18
 
19
  warnings.filterwarnings("ignore")
20
 
@@ -47,6 +52,7 @@ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained
47
  model.eval()
48
  print("Model loaded successfully!")
49
 
 
50
  def process_video(video_path, question):
51
  max_frames_num = 64
52
  video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
@@ -78,7 +84,6 @@ def process_video(video_path, question):
78
  response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
79
  return response
80
 
81
- # Gradio interface
82
  def gradio_interface(video_file, question):
83
  if video_file is None:
84
  return "Please upload a video file."
@@ -103,6 +108,5 @@ with gr.Blocks() as demo:
103
  outputs=output
104
  )
105
 
106
- # Launch the app
107
  if __name__ == "__main__":
108
  demo.launch()
 
1
  import gradio as gr
2
+ import subprocess # 🥲
3
+ subprocess.run(
4
+ "pip install flash-attn --no-build-isolation",
5
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
6
+ shell=True,
7
+ )
8
  # subprocess.run(
9
  # "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git",
10
  # shell=True,
 
19
  import warnings
20
  from decord import VideoReader, cpu
21
  import numpy as np
22
+ import spaces
23
 
24
  warnings.filterwarnings("ignore")
25
 
 
52
  model.eval()
53
  print("Model loaded successfully!")
54
 
55
+ @spaces.GPU
56
  def process_video(video_path, question):
57
  max_frames_num = 64
58
  video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
 
84
  response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
85
  return response
86
 
 
87
  def gradio_interface(video_file, question):
88
  if video_file is None:
89
  return "Please upload a video file."
 
108
  outputs=output
109
  )
110
 
 
111
  if __name__ == "__main__":
112
  demo.launch()
requirements.txt CHANGED
@@ -6,4 +6,6 @@ torchvision
6
  decord
7
  einops
8
  accelerate
 
 
9
  git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
 
6
  decord
7
  einops
8
  accelerate
9
+ open_clip_torch
10
+ av
11
  git+https://github.com/LLaVA-VL/LLaVA-NeXT.git