Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import yamlargparse | |
import torch.nn as nn | |
class network_wrapper(nn.Module): | |
""" | |
A wrapper class for loading different neural network models for tasks such as | |
speech enhancement (SE), speech separation (SS), and target speaker extraction (TSE). | |
It manages argument parsing, model configuration loading, and model instantiation | |
based on the task and model name. | |
""" | |
def __init__(self): | |
""" | |
Initializes the network wrapper without any predefined model or arguments. | |
""" | |
super(network_wrapper, self).__init__() | |
self.args = None # Placeholder for command-line arguments | |
self.config_path = None # Path to the YAML configuration file | |
self.model_name = None # Model name to be loaded based on the task | |
def load_args_se(self): | |
""" | |
Loads the arguments for the speech enhancement task using a YAML config file. | |
Sets the configuration path and parses all the required parameters such as | |
input/output paths, model settings, and FFT parameters. | |
""" | |
self.config_path = 'config/inference/' + self.model_name + '.yaml' | |
parser = yamlargparse.ArgumentParser("Settings") | |
# General model and inference settings | |
parser.add_argument('--config', help='Config file path', action=yamlargparse.ActionConfigFile) | |
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference') | |
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory') | |
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for noisy audio input') | |
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for enhanced audio output') | |
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)') | |
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use') | |
# Model-specific settings | |
parser.add_argument('--network', type=str, help='Select SE models: FRCRN_SE_16K, MossFormer2_SE_48K') | |
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate') | |
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding') | |
parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Decoding chunk size') | |
# FFT parameters for feature extraction | |
parser.add_argument('--window-len', dest='win_len', type=int, default=400, help='Window length for framing') | |
parser.add_argument('--window-inc', dest='win_inc', type=int, default=100, help='Window shift for framing') | |
parser.add_argument('--fft-len', dest='fft_len', type=int, default=512, help='FFT length for feature extraction') | |
parser.add_argument('--num-mels', dest='num_mels', type=int, default=60, help='Number of mel-spectrogram bins') | |
parser.add_argument('--window-type', dest='win_type', type=str, default='hamming', help='Window type: hamming or hanning') | |
# Parse arguments from the config file | |
self.args = parser.parse_args(['--config', self.config_path]) | |
def load_args_ss(self): | |
""" | |
Loads the arguments for the speech separation task using a YAML config file. | |
This method sets parameters such as input/output paths, model configurations, | |
and encoder/decoder settings for the MossFormer2-based speech separation model. | |
""" | |
self.config_path = 'config/inference/' + self.model_name + '.yaml' | |
parser = yamlargparse.ArgumentParser("Settings") | |
# General model and inference settings | |
parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile) | |
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference') | |
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory') | |
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input') | |
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output') | |
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)') | |
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use') | |
# Model-specific settings for speech separation | |
parser.add_argument('--network', type=str, help='Select SS models: MossFormer2_SS_16K') | |
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate') | |
parser.add_argument('--num-spks', dest='num_spks', type=int, default=2, help='Number of speakers to separate') | |
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding') | |
parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Decoding chunk size') | |
# Encoder settings | |
parser.add_argument('--encoder_kernel-size', dest='encoder_kernel_size', type=int, default=16, help='Kernel size for Conv1D encoder') | |
parser.add_argument('--encoder-embedding-dim', dest='encoder_embedding_dim', type=int, default=512, help='Embedding dimension from encoder') | |
# MossFormer model parameters | |
parser.add_argument('--mossformer-squence-dim', dest='mossformer_sequence_dim', type=int, default=512, help='Sequence dimension for MossFormer') | |
parser.add_argument('--num-mossformer_layer', dest='num_mossformer_layer', type=int, default=24, help='Number of MossFormer layers') | |
# Parse arguments from the config file | |
self.args = parser.parse_args(['--config', self.config_path]) | |
def load_args_tse(self): | |
""" | |
Loads the arguments for the target speaker extraction (TSE) task using a YAML config file. | |
Parameters include input/output paths, CUDA configurations, and decoding parameters. | |
""" | |
self.config_path = 'config/inference/' + self.model_name + '.yaml' | |
parser = yamlargparse.ArgumentParser("Settings") | |
# General model and inference settings | |
parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile) | |
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference') | |
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoint_dir/AV_MossFormer2_TSE_16K', help='Checkpoint directory') | |
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input') | |
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output') | |
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)') | |
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use') | |
# Model-specific settings for target speaker extraction | |
parser.add_argument('--network', type=str, help='Select TSE models(currently supports AV_MossFormer2_TSE_16K)') | |
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate (currently supports 16 kHz)') | |
parser.add_argument('--network_reference', type=dict, help='a dictionary that contains the parameters of auxilary reference signal') | |
parser.add_argument('--network_audio', type=dict, help='a dictionary that contains the network parameters') | |
# Decode parameters for streaming or chunk-based decoding | |
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding') | |
parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Chunk length for streaming') | |
# Parse arguments from the config file | |
self.args = parser.parse_args(['--config', self.config_path]) | |
def __call__(self, task, model_name): | |
""" | |
Calls the appropriate argument-loading function based on the task type | |
(e.g., 'speech_enhancement', 'speech_separation', or 'target_speaker_extraction'). | |
It then loads the corresponding model based on the selected task and model name. | |
Args: | |
- task (str): The task type ('speech_enhancement', 'speech_separation', 'target_speaker_extraction'). | |
- model_name (str): The name of the model to load (e.g., 'FRCRN_SE_16K'). | |
Returns: | |
- self.network: The instantiated neural network model. | |
""" | |
self.model_name = model_name # Set the model name based on user input | |
# Load arguments specific to the task | |
if task == 'speech_enhancement': | |
self.load_args_se() # Load arguments for speech enhancement | |
elif task == 'speech_separation': | |
self.load_args_ss() # Load arguments for speech separation | |
elif task == 'target_speaker_extraction': | |
self.load_args_tse() # Load arguments for target speaker extraction | |
else: | |
# Print error message if the task is unsupported | |
print(f'{task} is not supported, please select from: ' | |
'speech_enhancement, speech_separation, or target_speaker_extraction') | |
return | |
print(self.args) # Display the parsed arguments | |
self.args.task = task | |
self.args.network = self.model_name # Set the network name to the model name | |
# Initialize the corresponding network based on the selected model | |
if self.args.network == 'FRCRN_SE_16K': | |
from networks import CLS_FRCRN_SE_16K | |
self.network = CLS_FRCRN_SE_16K(self.args) # Load FRCRN model | |
elif self.args.network == 'MossFormer2_SE_48K': | |
from networks import CLS_MossFormer2_SE_48K | |
self.network = CLS_MossFormer2_SE_48K(self.args) # Load MossFormer2 model | |
elif self.args.network == 'MossFormerGAN_SE_16K': | |
from networks import CLS_MossFormerGAN_SE_16K | |
self.network = CLS_MossFormerGAN_SE_16K(self.args) # Load MossFormerGAN model | |
elif self.args.network == 'MossFormer2_SS_16K': | |
from networks import CLS_MossFormer2_SS_16K | |
self.network = CLS_MossFormer2_SS_16K(self.args) # Load MossFormer2 for separation | |
elif self.args.network == 'AV_MossFormer2_TSE_16K': | |
from networks import CLS_AV_MossFormer2_TSE_16K | |
self.network = CLS_AV_MossFormer2_TSE_16K(self.args) # Load AV MossFormer2 model for target speaker extraction | |
else: | |
# Print error message if no matching network is found | |
print("No network found!") | |
return | |
return self.network # Return the instantiated network model | |