from transformers import AutoTokenizer, EsmForProteinFolding from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein from transformers.models.esm.openfold_utils.feats import atom14_to_atom37 from Bio import SeqIO import gradio as gr import spaces from gradio_molecule3d import Molecule3D reps = [ { "model": 0, "chain": "", "resname": "", "style": "stick", "color": "whiteCarbon", "residue_range": "", "around": 0, "byres": False, "visible": False } ] def read_mol(molpath): with open(molpath, "r") as fp: lines = fp.readlines() mol = "" for l in lines: mol += l return mol def molecule(input_pdb): mol = read_mol(input_pdb) x = ( """
""" ) return f"""""" def convert_outputs_to_pdb(outputs): final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs) outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()} final_atom_positions = final_atom_positions.cpu().numpy() final_atom_mask = outputs["atom37_atom_exists"] pdbs = [] for i in range(outputs["aatype"].shape[0]): aa = outputs["aatype"][i] pred_pos = final_atom_positions[i] mask = final_atom_mask[i] resid = outputs["residue_index"][i] + 1 pred = OFProtein( aatype=aa, atom_positions=pred_pos, atom_mask=mask, residue_index=resid, b_factors=outputs["plddt"][i], chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None, ) pdbs.append(to_pdb(pred)) return pdbs tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1") model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True) model = model.cuda() model.esm = model.esm.half() import torch torch.backends.cuda.matmul.allow_tf32 = True model.trunk.set_chunk_size(64) @spaces.GPU(duration=120) def fold_protein(test_protein): tokenized_input = tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids'] tokenized_input = tokenized_input.cuda() with torch.no_grad(): output = model(tokenized_input) pdb = convert_outputs_to_pdb(output) with open("output_structure.pdb", "w") as f: f.write("".join(pdb)) html = molecule("output_structure.pdb") return html, "output_structure.pdb" @spaces.GPU(duration=180) def fold_protein_wpdb(test_protein, pdb_path): tokenized_input = tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids'] tokenized_input = tokenized_input.cuda() with torch.no_grad(): output = model(tokenized_input) pdb = convert_outputs_to_pdb(output) with open(pdb_path, "w") as f: f.write("".join(pdb)) html = molecule(pdb_path) return html def load_protein_sequences(fasta_file): protein_sequences = {} for record in SeqIO.parse(fasta_file, "fasta"): protein_sequences[record.id] = str(record.seq) return protein_sequences def show_split(inputfile): seqs = load_protein_sequences(inputfile) htmls = [] pdb_paths = [] for seq in seqs: pdb_path = f'{seq.replace(" ", "_").replace(",","")}.pdb' pdb_paths.append(pdb_path) html = fold_protein_wpdb(seqs[seq], pdb_path) x = f"""