Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
from omegaconf import OmegaConf | |
import torch | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from latentsync.models.unet import UNet3DConditionModel | |
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline | |
from diffusers.utils.import_utils import is_xformers_available | |
from accelerate.utils import set_seed | |
from latentsync.whisper.audio2feature import Audio2Feature | |
def main(config, args): | |
print(f"Input video path: {args.video_path}") | |
print(f"Input audio path: {args.audio_path}") | |
print(f"Loaded checkpoint path: {args.inference_ckpt_path}") | |
scheduler = DDIMScheduler.from_pretrained("configs") | |
if config.model.cross_attention_dim == 768: | |
whisper_model_path = "checkpoints/whisper/small.pt" | |
elif config.model.cross_attention_dim == 384: | |
whisper_model_path = "checkpoints/whisper/tiny.pt" | |
else: | |
raise NotImplementedError("cross_attention_dim must be 768 or 384") | |
audio_encoder = Audio2Feature(model_path=whisper_model_path, device="cuda", num_frames=config.data.num_frames) | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
vae.config.scaling_factor = 0.18215 | |
vae.config.shift_factor = 0 | |
unet, _ = UNet3DConditionModel.from_pretrained( | |
OmegaConf.to_container(config.model), | |
args.inference_ckpt_path, # load checkpoint | |
device="cpu", | |
) | |
unet = unet.to(dtype=torch.float16) | |
# set xformers | |
if is_xformers_available(): | |
unet.enable_xformers_memory_efficient_attention() | |
pipeline = LipsyncPipeline( | |
vae=vae, | |
audio_encoder=audio_encoder, | |
unet=unet, | |
scheduler=scheduler, | |
).to("cuda") | |
if args.seed != -1: | |
set_seed(args.seed) | |
else: | |
torch.seed() | |
print(f"Initial seed: {torch.initial_seed()}") | |
pipeline( | |
video_path=args.video_path, | |
audio_path=args.audio_path, | |
video_out_path=args.video_out_path, | |
video_mask_path=args.video_out_path.replace(".mp4", "_mask.mp4"), | |
num_frames=config.data.num_frames, | |
num_inference_steps=config.run.inference_steps, | |
guidance_scale=args.guidance_scale, | |
weight_dtype=torch.float16, | |
width=config.data.resolution, | |
height=config.data.resolution, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml") | |
parser.add_argument("--inference_ckpt_path", type=str, required=True) | |
parser.add_argument("--video_path", type=str, required=True) | |
parser.add_argument("--audio_path", type=str, required=True) | |
parser.add_argument("--video_out_path", type=str, required=True) | |
parser.add_argument("--guidance_scale", type=float, default=1.0) | |
parser.add_argument("--seed", type=int, default=1247) | |
args = parser.parse_args() | |
config = OmegaConf.load(args.unet_config_path) | |
main(config, args) | |