SVFR-demo / infer.py
fffiloni's picture
Migrated from GitHub
bdd549c verified
import argparse
import warnings
import os
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
import random
from omegaconf import OmegaConf
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPVisionModelWithProjection
import torchvision.transforms as transforms
import torch.nn.functional as F
from src.models.svfr_adapter.unet_3d_svd_condition_ip import UNet3DConditionSVDModel
# pipeline
from src.pipelines.pipeline import LQ2VideoLongSVDPipeline
from src.utils.util import (
save_videos_grid,
seed_everything,
)
from torchvision.utils import save_image
from src.models.id_proj import IDProjConvModel
from src.models import model_insightface_360k
from src.dataset.face_align.align import AlignImage
warnings.filterwarnings("ignore")
import decord
import cv2
from src.dataset.dataset import get_affine_transform, mean_face_lm5p_256
BASE_DIR = '.'
def main(config,args):
if 'CUDA_VISIBLE_DEVICES' in os.environ:
cuda_visible_devices = os.environ['CUDA_VISIBLE_DEVICES']
print(f"CUDA_VISIBLE_DEVICES is set to: {cuda_visible_devices}")
else:
print("CUDA_VISIBLE_DEVICES is not set.")
save_dir = f"{BASE_DIR}/{args.output_dir}"
os.makedirs(save_dir,exist_ok=True)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="vae",
variant="fp16")
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="scheduler")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="image_encoder",
variant="fp16")
unet = UNet3DConditionSVDModel.from_pretrained(
f"{BASE_DIR}/{config.pretrained_model_name_or_path}",
subfolder="unet",
variant="fp16")
weight_dir = 'models/face_align'
det_path = os.path.join(BASE_DIR, weight_dir, 'yoloface_v5m.pt')
align_instance = AlignImage("cuda", det_path=det_path)
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
import torch.nn as nn
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
x = super().forward(x)
return x
# Add ref channel
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(
12,
old_weights.shape[0],
kernel_size=unet.conv_in.kernel_size,
stride=unet.conv_in.stride,
padding=unet.conv_in.padding,
bias=True if old_bias is not None else False,
)
param = torch.zeros((320, 4, 3, 3), requires_grad=True)
new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights, param), dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 12
unet.config.in_channels = 12
id_linear = IDProjConvModel(in_channels=512, out_channels=1024).to(device='cuda')
# load pretrained weights
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
unet.load_state_dict(
torch.load(unet_checkpoint_path, map_location="cpu"),
strict=True,
)
id_linear_checkpoint_path = os.path.join(BASE_DIR, config.id_linear_checkpoint_path)
id_linear.load_state_dict(
torch.load(id_linear_checkpoint_path, map_location="cpu"),
strict=True,
)
net_arcface = model_insightface_360k.getarcface(f'{BASE_DIR}/{config.net_arcface_checkpoint_path}').eval().to(device="cuda")
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(
f"Do not support weight dtype: {config.weight_dtype} during training"
)
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
id_linear.to(weight_dtype)
net_arcface.requires_grad_(False).to(weight_dtype)
pipe = LQ2VideoLongSVDPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
feature_extractor=None
)
pipe = pipe.to("cuda", dtype=unet.dtype)
seed_input = args.seed
seed_everything(seed_input)
video_path = args.input_path
task_ids = args.task_ids
if 2 in task_ids and args.mask_path is not None:
mask_path = args.mask_path
mask = Image.open(mask_path).convert("L")
mask_array = np.array(mask)
white_positions = mask_array == 255
print('task_ids:',task_ids)
task_prompt = [0,0,0]
for i in range(3):
if i in task_ids:
task_prompt[i] = 1
print("task_prompt:",task_prompt)
video_name = video_path.split('/')[-1]
# print(video_name)
if os.path.exists(os.path.join(save_dir, "result_frames", video_name[:-4])):
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
# continue
cap = decord.VideoReader(video_path, fault_tol=1)
total_frames = len(cap)
T = total_frames #
print("total_frames:",total_frames)
step=1
drive_idx_start = 0
drive_idx_list = list(range(drive_idx_start, drive_idx_start + T * step, step))
assert len(drive_idx_list) == T
imSameIDs = []
vid_gt = []
for i, drive_idx in enumerate(drive_idx_list):
frame = cap[drive_idx].asnumpy()
imSameID = Image.fromarray(frame)
imSameID = imSameID.resize((512,512))
image_array = np.array(imSameID)
if 2 in task_ids and args.mask_path is not None:
image_array[white_positions] = [255, 255, 255] # mask for inpainting task
vid_gt.append(np.float32(image_array/255.))
imSameIDs.append(imSameID)
vid_lq = [(torch.from_numpy(frame).permute(2,0,1) - 0.5) / 0.5 for frame in vid_gt]
val_data = dict(
pixel_values_vid_lq = torch.stack(vid_lq,dim=0),
# pixel_values_ref_img=self.to_tensor(target_image),
# pixel_values_ref_concat_img=self.to_tensor(imSrc2),
task_ids=task_ids,
task_id_input=torch.tensor(task_prompt),
total_frames=total_frames,
)
window_overlap=0
inter_frame_list = get_overlap_slide_window_indices(val_data["total_frames"],config.data.n_sample_frames,window_overlap)
lq_frames = val_data["pixel_values_vid_lq"]
task_ids = val_data["task_ids"]
task_id_input = val_data["task_id_input"]
height, width = val_data["pixel_values_vid_lq"].shape[-2:]
print("Generating the first clip...")
output = pipe(
lq_frames[inter_frame_list[0]].to("cuda").to(weight_dtype), # lq
None, # ref concat
torch.zeros((1, len(inter_frame_list[0]), 49, 1024)).to("cuda").to(weight_dtype),# encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=len(inter_frame_list[0]),
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=len(inter_frame_list[0]),
num_inference_steps=50,
i2i_noise_strength=config.i2i_noise_strength,
)
video = output.frames
ref_img_tensor = video[0][:,-1]
ref_img = (video[0][:,-1] *0.5+0.5).clamp(0,1) * 255.
ref_img = ref_img.permute(1,2,0).cpu().numpy().astype(np.uint8)
pts5 = align_instance(ref_img[:,:,[2,1,0]], maxface=True)[0][0]
warp_mat = get_affine_transform(pts5, mean_face_lm5p_256 * height/256)
ref_img = cv2.warpAffine(np.array(Image.fromarray(ref_img)), warp_mat, (height, width), flags=cv2.INTER_CUBIC)
ref_img = to_tensor(ref_img).to("cuda").to(weight_dtype)
save_image(ref_img*0.5 + 0.5,f"{save_dir}/ref_img_align.png")
ref_img = F.interpolate(ref_img.unsqueeze(0)[:, :, 0:224, 16:240], size=[112, 112], mode='bilinear')
_, id_feature_conv = net_arcface(ref_img)
id_embedding = id_linear(id_feature_conv)
print('Generating all video clips...')
video = pipe(
lq_frames.to("cuda").to(weight_dtype), # lq
ref_img_tensor.to("cuda").to(weight_dtype),
id_embedding.unsqueeze(1).repeat(1, len(lq_frames), 1, 1).to("cuda").to(weight_dtype), # encoder_hidden_states
task_id_input.to("cuda").to(weight_dtype),
height=height,
width=width,
num_frames=val_data["total_frames"],#frame_num,
decode_chunk_size=config.decode_chunk_size,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale=config.min_appearance_guidance_scale,
max_guidance_scale=config.max_appearance_guidance_scale,
overlap=config.overlap,
frames_per_batch=config.data.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength,
).frames
video = (video*0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(device="cuda")], dim=0).cpu()
save_videos_grid(video, f"{save_dir}/{video_name[:-4]}_{seed_input}.mp4", n_rows=1, fps=25)
if args.restore_frames:
video = video.squeeze(0)
os.makedirs(os.path.join(save_dir, "result_frames", f"{video_name[:-4]}_{seed_input}"),exist_ok=True)
print(os.path.join(save_dir, "result_frames", video_name[:-4]))
for i in range(video.shape[1]):
save_frames_path = os.path.join(f"{save_dir}/result_frames", f"{video_name[:-4]}_{seed_input}", f'{i:08d}.png')
save_image(video[:,i], save_frames_path)
def get_overlap_slide_window_indices(video_length, window_size, window_overlap):
inter_frame_list = []
for j in range(0, video_length, window_size-window_overlap):
inter_frame_list.append( [e % video_length for e in range(j, min(j + window_size, video_length))] )
return inter_frame_list
if __name__ == "__main__":
def parse_list(value):
return [int(x) for x in value.split(",")]
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/infer.yaml")
parser.add_argument("--output_dir", type=str, default="output")
parser.add_argument("--seed", type=int, default=77)
parser.add_argument("--task_ids", type=parse_list, default=[0])
parser.add_argument("--input_path", type=str, default='./assert/lq/lq3.mp4')
parser.add_argument("--mask_path", type=str, default=None)
parser.add_argument("--restore_frames", action='store_true')
args = parser.parse_args()
config = OmegaConf.load(args.config)
main(config, args)