gsaivinay commited on
Commit
08be18b
·
1 Parent(s): 1c7d9c0
app.py CHANGED
@@ -51,9 +51,8 @@ api = HfApi(token=H4_TOKEN)
51
 
52
 
53
  def restart_space():
54
- api.restart_space(
55
- repo_id="gsaivinay/open_llm_leaderboard", token=H4_TOKEN
56
- )
57
 
58
  # Rate limit variables
59
  RATE_LIMIT_PERIOD = 7
@@ -98,7 +97,7 @@ else:
98
  eval_queue_private, eval_results_private = None, None
99
 
100
  original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
101
- models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
102
 
103
  to_be_dumped = f"models = {repr(models)}\n"
104
 
@@ -130,7 +129,9 @@ def add_new_eval(
130
  error_msg = f"Organisation or user `{model.split('/')[0]}`"
131
  error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
132
  error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
133
- error_msg += "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
 
 
134
  return styled_error(error_msg)
135
 
136
  if model_type is None or model_type == "":
@@ -213,9 +214,29 @@ def change_tab(query_param: str):
213
 
214
 
215
  # Searching and filtering
216
- def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
 
 
 
 
 
 
 
 
 
217
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
218
- def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
 
 
 
 
 
 
 
 
 
 
 
219
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
220
  if query != "":
221
  filtered_df = search_table(filtered_df, query)
@@ -223,9 +244,11 @@ def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, colu
223
 
224
  return df
225
 
 
226
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
227
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
228
 
 
229
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
230
  always_here_cols = [
231
  AutoEvalColumn.model_type_symbol.name,
@@ -237,8 +260,9 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
237
  ]
238
  return filtered_df
239
 
 
240
  NUMERIC_INTERVALS = {
241
- "Unknown": pd.Interval(-1, 0, closed="right"),
242
  "< 1.5B": pd.Interval(0, 1.5, closed="right"),
243
  "~3B": pd.Interval(1.5, 5, closed="right"),
244
  "~7B": pd.Interval(6, 11, closed="right"),
@@ -247,9 +271,9 @@ NUMERIC_INTERVALS = {
247
  "60B+": pd.Interval(55, 10000, closed="right"),
248
  }
249
 
 
250
  def filter_models(
251
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
252
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
253
  ) -> pd.DataFrame:
254
  # Show all models
255
  if show_deleted:
@@ -545,7 +569,10 @@ with demo:
545
  max_rows=5,
546
  )
547
  with gr.Row():
548
- gr.Markdown("# ✉️✨ Submit your model [here!](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)", elem_classes="markdown-text")
 
 
 
549
 
550
  with gr.Row():
551
  with gr.Accordion("📙 Citation", open=False):
 
51
 
52
 
53
  def restart_space():
54
+ api.restart_space(repo_id="gsaivinay/open_llm_leaderboard", token=H4_TOKEN)
55
+
 
56
 
57
  # Rate limit variables
58
  RATE_LIMIT_PERIOD = 7
 
97
  eval_queue_private, eval_results_private = None, None
98
 
99
  original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
100
+ models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
101
 
102
  to_be_dumped = f"models = {repr(models)}\n"
103
 
 
129
  error_msg = f"Organisation or user `{model.split('/')[0]}`"
130
  error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
131
  error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
132
+ error_msg += (
133
+ "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
134
+ )
135
  return styled_error(error_msg)
136
 
137
  if model_type is None or model_type == "":
 
214
 
215
 
216
  # Searching and filtering
217
+ def update_table(
218
+ hidden_df: pd.DataFrame,
219
+ current_columns_df: pd.DataFrame,
220
+ columns: list,
221
+ type_query: list,
222
+ precision_query: str,
223
+ size_query: list,
224
+ show_deleted: bool,
225
+ query: str,
226
+ ):
227
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
228
+
229
+
230
+ def update_table(
231
+ hidden_df: pd.DataFrame,
232
+ current_columns_df: pd.DataFrame,
233
+ columns: list,
234
+ type_query: list,
235
+ precision_query: str,
236
+ size_query: list,
237
+ show_deleted: bool,
238
+ query: str,
239
+ ):
240
  filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
241
  if query != "":
242
  filtered_df = search_table(filtered_df, query)
 
244
 
245
  return df
246
 
247
+
248
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
249
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
250
 
251
+
252
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
253
  always_here_cols = [
254
  AutoEvalColumn.model_type_symbol.name,
 
260
  ]
261
  return filtered_df
262
 
263
+
264
  NUMERIC_INTERVALS = {
265
+ "Unknown": pd.Interval(-1, 0, closed="right"),
266
  "< 1.5B": pd.Interval(0, 1.5, closed="right"),
267
  "~3B": pd.Interval(1.5, 5, closed="right"),
268
  "~7B": pd.Interval(6, 11, closed="right"),
 
271
  "60B+": pd.Interval(55, 10000, closed="right"),
272
  }
273
 
274
+
275
  def filter_models(
276
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
 
277
  ) -> pd.DataFrame:
278
  # Show all models
279
  if show_deleted:
 
569
  max_rows=5,
570
  )
571
  with gr.Row():
572
+ gr.Markdown(
573
+ "# ✉️✨ Submit your model [here!](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)",
574
+ elem_classes="markdown-text",
575
+ )
576
 
577
  with gr.Row():
578
  with gr.Accordion("📙 Citation", open=False):
src/assets/css_html_js.py CHANGED
@@ -33,7 +33,7 @@ custom_css = """
33
  background: none;
34
  border: none;
35
  }
36
-
37
  #search-bar {
38
  padding: 0px;
39
  }
@@ -83,7 +83,7 @@ table th:first-child {
83
  #filter_type label > .wrap{
84
  width: 103px;
85
  }
86
- #filter_type label > .wrap .wrap-inner{
87
  padding: 2px;
88
  }
89
  #filter_type label > .wrap .wrap-inner input{
 
33
  background: none;
34
  border: none;
35
  }
36
+
37
  #search-bar {
38
  padding: 0px;
39
  }
 
83
  #filter_type label > .wrap{
84
  width: 103px;
85
  }
86
+ #filter_type label > .wrap .wrap-inner{
87
  padding: 2px;
88
  }
89
  #filter_type label > .wrap .wrap-inner input{
src/display_models/get_model_metadata.py CHANGED
@@ -1,17 +1,15 @@
1
  import glob
2
  import json
3
  import os
4
- import re
5
  import pickle
 
6
  from typing import List
7
 
8
  import huggingface_hub
 
9
  from huggingface_hub import HfApi
10
  from tqdm import tqdm
11
- from transformers import AutoModel, AutoConfig
12
- from accelerate import init_empty_weights
13
- from transformers import AutoModel, AutoConfig
14
- from accelerate import init_empty_weights
15
 
16
  from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
17
  from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
@@ -25,7 +23,6 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
25
  try:
26
  with open("model_info_cache.pkl", "rb") as f:
27
  model_info_cache = pickle.load(f)
28
- except (EOFError, FileNotFoundError):
29
  except (EOFError, FileNotFoundError):
30
  model_info_cache = {}
31
  try:
@@ -67,7 +64,7 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
67
  if model_name not in model_size_cache:
68
  model_size_cache[model_name] = get_model_size(model_name, model_info)
69
  model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
70
-
71
  # save cache to disk in pickle format
72
  with open("model_info_cache.pkl", "wb") as f:
73
  pickle.dump(model_info_cache, f)
@@ -101,7 +98,7 @@ def get_model_size(model_name, model_info):
101
  with init_empty_weights():
102
  model = AutoModel.from_config(config, trust_remote_code=False)
103
  return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
104
- except (EnvironmentError, ValueError, KeyError): # model config not found, likely private
105
  try:
106
  size_match = re.search(size_pattern, model_name.lower())
107
  size = size_match.group(0)
 
1
  import glob
2
  import json
3
  import os
 
4
  import pickle
5
+ import re
6
  from typing import List
7
 
8
  import huggingface_hub
9
+ from accelerate import init_empty_weights
10
  from huggingface_hub import HfApi
11
  from tqdm import tqdm
12
+ from transformers import AutoConfig, AutoModel
 
 
 
13
 
14
  from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
15
  from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
 
23
  try:
24
  with open("model_info_cache.pkl", "rb") as f:
25
  model_info_cache = pickle.load(f)
 
26
  except (EOFError, FileNotFoundError):
27
  model_info_cache = {}
28
  try:
 
64
  if model_name not in model_size_cache:
65
  model_size_cache[model_name] = get_model_size(model_name, model_info)
66
  model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
67
+
68
  # save cache to disk in pickle format
69
  with open("model_info_cache.pkl", "wb") as f:
70
  pickle.dump(model_info_cache, f)
 
98
  with init_empty_weights():
99
  model = AutoModel.from_config(config, trust_remote_code=False)
100
  return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
101
+ except (EnvironmentError, ValueError, KeyError): # model config not found, likely private
102
  try:
103
  size_match = re.search(size_pattern, model_name.lower())
104
  size = size_match.group(0)
src/display_models/read_results.py CHANGED
@@ -107,7 +107,7 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
107
  revision=model_sha,
108
  results={benchmark: mean_acc},
109
  precision=precision, # todo model_type=, weight_type=
110
- date=config.get("submission_date")
111
  )
112
  )
113
 
 
107
  revision=model_sha,
108
  results={benchmark: mean_acc},
109
  precision=precision, # todo model_type=, weight_type=
110
+ date=config.get("submission_date"),
111
  )
112
  )
113
 
src/load_from_hub.py CHANGED
@@ -1,10 +1,10 @@
1
  import json
2
  import os
 
3
 
4
  import pandas as pd
5
  from huggingface_hub import Repository
6
  from transformers import AutoConfig
7
- from collections import defaultdict
8
 
9
  from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
10
  from src.display_models.get_model_metadata import apply_metadata
@@ -23,7 +23,8 @@ def get_all_requested_models(requested_models_dir: str) -> set[str]:
23
  current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
24
  if current_depth == depth:
25
  for file in files:
26
- if not file.endswith(".json"): continue
 
27
  with open(os.path.join(root, file), "r") as f:
28
  info = json.load(f)
29
  file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
 
1
  import json
2
  import os
3
+ from collections import defaultdict
4
 
5
  import pandas as pd
6
  from huggingface_hub import Repository
7
  from transformers import AutoConfig
 
8
 
9
  from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
10
  from src.display_models.get_model_metadata import apply_metadata
 
23
  current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
24
  if current_depth == depth:
25
  for file in files:
26
+ if not file.endswith(".json"):
27
+ continue
28
  with open(os.path.join(root, file), "r") as f:
29
  info = json.load(f)
30
  file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
src/rate_limiting.py CHANGED
@@ -1,5 +1,4 @@
1
-
2
- from datetime import datetime, timezone, timedelta
3
 
4
 
5
  def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
@@ -12,5 +11,3 @@ def user_submission_permission(submission_name, users_to_submission_dates, rate_
12
  submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
13
 
14
  return len(submissions_after_timelimit)
15
-
16
-
 
1
+ from datetime import datetime, timedelta, timezone
 
2
 
3
 
4
  def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
 
11
  submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
12
 
13
  return len(submissions_after_timelimit)