Sai Vinay G commited on
Commit
39b62ef
·
1 Parent(s): bf07f8e
.gitignore CHANGED
@@ -6,6 +6,8 @@ __pycache__/
6
  *ipynb
7
  .vscode/
8
 
 
 
9
  gpt_4_evals/
10
  human_evals/
11
  eval-queue/
 
6
  *ipynb
7
  .vscode/
8
 
9
+ .tmp/
10
+
11
  gpt_4_evals/
12
  human_evals/
13
  eval-queue/
app.py CHANGED
@@ -18,6 +18,8 @@ from src.assets.css_html_js import custom_css, get_window_url_params
18
  from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
19
  from src.init import get_all_requested_models, load_all_info_from_hub
20
 
 
 
21
  # clone / pull the lmeh eval data
22
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
23
 
@@ -91,7 +93,7 @@ def get_leaderboard_df():
91
 
92
  df = pd.DataFrame.from_records(all_data)
93
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
94
- df = df[COLS]
95
 
96
  # filter out if any of the benchmarks have not been produced
97
  df = df[has_no_nan_values(df, BENCHMARK_COLS)]
@@ -183,6 +185,9 @@ def add_new_eval(
183
  precision = precision.split(" ")[0]
184
  current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
185
 
 
 
 
186
  # check the model actually exists before adding the eval
187
  if revision == "":
188
  revision = "main"
@@ -325,7 +330,13 @@ with demo:
325
  )
326
  filter_columns = gr.Radio(
327
  label="⏚ Filter model types",
328
- choices = ["all", "🟢 base", "🔶 instruction-tuned", "🟦 RL-tuned"],
 
 
 
 
 
 
329
  value="all",
330
  elem_id="filter-columns"
331
  )
@@ -423,4 +434,4 @@ with demo:
423
  scheduler = BackgroundScheduler()
424
  scheduler.add_job(restart_space, "interval", seconds=3600)
425
  scheduler.start()
426
- demo.queue(concurrency_count=40).launch()
 
18
  from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
19
  from src.init import get_all_requested_models, load_all_info_from_hub
20
 
21
+ pd.set_option('display.precision', 1)
22
+
23
  # clone / pull the lmeh eval data
24
  H4_TOKEN = os.environ.get("H4_TOKEN", None)
25
 
 
93
 
94
  df = pd.DataFrame.from_records(all_data)
95
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
96
+ df = df[COLS].round(decimals=2)
97
 
98
  # filter out if any of the benchmarks have not been produced
99
  df = df[has_no_nan_values(df, BENCHMARK_COLS)]
 
185
  precision = precision.split(" ")[0]
186
  current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
187
 
188
+ if model_type is None or model_type == "":
189
+ return styled_error("Please select a model type.")
190
+
191
  # check the model actually exists before adding the eval
192
  if revision == "":
193
  revision = "main"
 
330
  )
331
  filter_columns = gr.Radio(
332
  label="⏚ Filter model types",
333
+ choices = [
334
+ "all",
335
+ ModelType.PT.to_str(),
336
+ ModelType.FT.to_str(),
337
+ ModelType.IFT.to_str(),
338
+ ModelType.RL.to_str(),
339
+ ],
340
  value="all",
341
  elem_id="filter-columns"
342
  )
 
434
  scheduler = BackgroundScheduler()
435
  scheduler.add_job(restart_space, "interval", seconds=3600)
436
  scheduler.start()
437
+ demo.queue(concurrency_count=40).launch()
requirements.txt CHANGED
File without changes
src/assets/css_html_js.py CHANGED
@@ -2,31 +2,40 @@ custom_css = """
2
  #changelog-text {
3
  font-size: 16px !important;
4
  }
 
5
  #changelog-text h2 {
6
  font-size: 18px !important;
7
  }
 
8
  .markdown-text {
9
  font-size: 16px !important;
10
  }
 
11
  #models-to-add-text {
12
  font-size: 18px !important;
13
  }
 
14
  #citation-button span {
15
  font-size: 16px !important;
16
  }
 
17
  #citation-button textarea {
18
  font-size: 16px !important;
19
  }
 
20
  #citation-button > label > button {
21
  margin: 6px;
22
  transform: scale(1.3);
23
  }
 
24
  #leaderboard-table {
25
  margin-top: 15px
26
  }
 
27
  #leaderboard-table-lite {
28
  margin-top: 15px
29
  }
 
30
  #search-bar-table-box > div:first-child {
31
  background: none;
32
  border: none;
@@ -35,11 +44,13 @@ custom_css = """
35
  #search-bar {
36
  padding: 0px;
37
  }
 
38
  /* Hides the final AutoEvalColumn */
39
  #llm-benchmark-tab-table table td:last-child,
40
  #llm-benchmark-tab-table table th:last-child {
41
  display: none;
42
  }
 
43
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
44
  table td:first-child,
45
  table th:first-child {
@@ -47,9 +58,11 @@ table th:first-child {
47
  overflow: auto;
48
  white-space: nowrap;
49
  }
 
50
  .tab-buttons button {
51
  font-size: 20px;
52
  }
 
53
  #scale-logo {
54
  border-style: none !important;
55
  box-shadow: none;
@@ -58,6 +71,7 @@ table th:first-child {
58
  margin-right: auto;
59
  max-width: 600px;
60
  }
 
61
  #scale-logo .download {
62
  display: none;
63
  }
@@ -69,4 +83,4 @@ get_window_url_params = """
69
  url_params = Object.fromEntries(params);
70
  return url_params;
71
  }
72
- """
 
2
  #changelog-text {
3
  font-size: 16px !important;
4
  }
5
+
6
  #changelog-text h2 {
7
  font-size: 18px !important;
8
  }
9
+
10
  .markdown-text {
11
  font-size: 16px !important;
12
  }
13
+
14
  #models-to-add-text {
15
  font-size: 18px !important;
16
  }
17
+
18
  #citation-button span {
19
  font-size: 16px !important;
20
  }
21
+
22
  #citation-button textarea {
23
  font-size: 16px !important;
24
  }
25
+
26
  #citation-button > label > button {
27
  margin: 6px;
28
  transform: scale(1.3);
29
  }
30
+
31
  #leaderboard-table {
32
  margin-top: 15px
33
  }
34
+
35
  #leaderboard-table-lite {
36
  margin-top: 15px
37
  }
38
+
39
  #search-bar-table-box > div:first-child {
40
  background: none;
41
  border: none;
 
44
  #search-bar {
45
  padding: 0px;
46
  }
47
+
48
  /* Hides the final AutoEvalColumn */
49
  #llm-benchmark-tab-table table td:last-child,
50
  #llm-benchmark-tab-table table th:last-child {
51
  display: none;
52
  }
53
+
54
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
55
  table td:first-child,
56
  table th:first-child {
 
58
  overflow: auto;
59
  white-space: nowrap;
60
  }
61
+
62
  .tab-buttons button {
63
  font-size: 20px;
64
  }
65
+
66
  #scale-logo {
67
  border-style: none !important;
68
  box-shadow: none;
 
71
  margin-right: auto;
72
  max-width: 600px;
73
  }
74
+
75
  #scale-logo .download {
76
  display: none;
77
  }
 
83
  url_params = Object.fromEntries(params);
84
  return url_params;
85
  }
86
+ """
src/assets/hardcoded_evals.py CHANGED
@@ -38,3 +38,4 @@ baseline = {
38
  AutoEvalColumn.dummy.name: "baseline",
39
  AutoEvalColumn.model_type.name: "",
40
  }
 
 
38
  AutoEvalColumn.dummy.name: "baseline",
39
  AutoEvalColumn.model_type.name: "",
40
  }
41
+
src/assets/text_content.py CHANGED
@@ -1,42 +1,57 @@
 
 
1
  CHANGELOG_TEXT = f"""
2
  ## [2023-06-19]
3
  - Added model type column
4
  - Hid revision and 8bit columns since all models are the same atm
 
5
  ## [2023-06-16]
6
  - Refactored code base
7
  - Added new columns: number of parameters, hub likes, license
 
8
  ## [2023-06-13]
9
  - Adjust description for TruthfulQA
 
10
  ## [2023-06-12]
11
  - Add Human & GPT-4 Evaluations
 
12
  ## [2023-06-05]
13
  - Increase concurrent thread count to 40
14
  - Search models on ENTER
 
15
  ## [2023-06-02]
16
  - Add a typeahead search bar
17
  - Use webhooks to automatically spawn a new Space when someone opens a PR
18
  - Start recording `submitted_time` for eval requests
19
  - Limit AutoEvalColumn max-width
 
20
  ## [2023-05-30]
21
  - Add a citation button
22
  - Simplify Gradio layout
 
23
  ## [2023-05-29]
24
  - Auto-restart every hour for the latest results
25
  - Sync with the internal version (minor style changes)
 
26
  ## [2023-05-24]
27
  - Add a baseline that has 25.0 for all values
28
  - Add CHANGELOG
 
29
  ## [2023-05-23]
30
  - Fix a CSS issue that made the leaderboard hard to read in dark mode
 
31
  ## [2023-05-22]
32
  - Display a success/error message after submitting evaluation requests
33
  - Reject duplicate submission
34
  - Do not display results that have incomplete results
35
  - Display different queues for jobs that are RUNNING, PENDING, FINISHED status
 
36
  ## [2023-05-15]
37
  - Fix a typo: from "TruthQA" to "QA"
 
38
  ## [2023-05-10]
39
  - Fix a bug that prevented auto-refresh
 
40
  ## [2023-05-10]
41
  - Release the leaderboard to public
42
  """
@@ -45,22 +60,28 @@ TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""
45
 
46
  INTRODUCTION_TEXT = f"""
47
  📐 The 🤗 Open LLM Leaderboard aims to track, rank and evaluate LLMs and chatbots as they are released.
 
48
  🤗 Anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as the original LLaMa release.
 
49
  Other cool benchmarks for LLMs are developed at HuggingFace, go check them out: 🙋🤖 [human and GPT4 evals](https://huggingface.co/spaces/HuggingFaceH4/human_eval_llm_leaderboard), 🖥️ [performance benchmarks](https://huggingface.co/spaces/optimum/llm-perf-leaderboard)
50
- 🟢: Base pretrained model – 🔶: Instruction finetuned model – 🟦: Model finetuned with RL (read more details in "About" tab)
51
  """
52
 
53
  LLM_BENCHMARKS_TEXT = f"""
54
  # Context
55
  With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
 
56
  📈 We evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
 
57
  - <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
58
  - <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
59
  - <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
60
  - <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
 
61
  For all these evaluations, a higher score is a better score.
62
  We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
 
63
  # Some good practices before submitting a model
 
64
  ### 1) Make sure you can load your model and tokenizer using AutoClasses:
65
  ```python
66
  from transformers import AutoConfig, AutoModel, AutoTokenizer
@@ -69,44 +90,59 @@ model = AutoModel.from_pretrained("your model name", revision=revision)
69
  tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
70
  ```
71
  If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
 
72
  Note: make sure your model is public!
73
  Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
 
74
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
75
  It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
 
76
  ### 3) Make sure your model has an open license!
77
  This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
 
78
  ### 4) Fill up your model card
79
  When we add extra information about models to the leaderboard, it will be automatically taken from the model card
 
80
  # Reproducibility and details
 
81
  ### Details and logs
82
  You can find:
83
  - detailed numerical results in the `results` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/results
84
  - details on the input/outputs for the models in the `details` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/details
85
  - community queries and running status in the `requests` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/requests
 
86
  ### Reproducibility
87
  To reproduce our results, here is the commands you can run, using [this version](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463) of the Eleuther AI Harness:
88
  `python main.py --model=hf-causal --model_args="pretrained=<your_model>,use_accelerate=True,revision=<your_model_revision>"`
89
  ` --tasks=<task_list> --num_fewshot=<n_few_shot> --batch_size=2 --output_path=<output_path>`
 
90
  The total batch size we get for models which fit on one A100 node is 16 (8 GPUs * 2). If you don't use parallelism, adapt your batch size to fit.
91
  *You can expect results to vary slightly for different batch sizes because of padding.*
 
92
  The tasks and few shots parameters are:
93
  - ARC: 25-shot, *arc-challenge* (`acc_norm`)
94
  - HellaSwag: 10-shot, *hellaswag* (`acc_norm`)
95
  - TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
96
- - MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (`acc` of `all`)
 
97
  ### Quantization
98
  To get more information about quantization, see:
99
  - 8 bits: [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), [paper](https://arxiv.org/abs/2208.07339)
100
  - 4 bits: [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes), [paper](https://arxiv.org/abs/2305.14314)
 
101
  ### Icons
102
- 🟢 means that the model is pretrained
103
- 🔶 that it is finetuned
104
- 🟦 that is was trained with RL.
 
105
  If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
 
 
106
  # In case of model failure
107
  If your model is displayed in the `FAILED` category, its execution stopped.
108
  Make sure you have followed the above steps first.
109
  If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
 
110
  """
111
 
112
  EVALUATION_QUEUE_TEXT = f"""
 
1
+ from ..auto_leaderboard.model_metadata_type import ModelType
2
+
3
  CHANGELOG_TEXT = f"""
4
  ## [2023-06-19]
5
  - Added model type column
6
  - Hid revision and 8bit columns since all models are the same atm
7
+
8
  ## [2023-06-16]
9
  - Refactored code base
10
  - Added new columns: number of parameters, hub likes, license
11
+
12
  ## [2023-06-13]
13
  - Adjust description for TruthfulQA
14
+
15
  ## [2023-06-12]
16
  - Add Human & GPT-4 Evaluations
17
+
18
  ## [2023-06-05]
19
  - Increase concurrent thread count to 40
20
  - Search models on ENTER
21
+
22
  ## [2023-06-02]
23
  - Add a typeahead search bar
24
  - Use webhooks to automatically spawn a new Space when someone opens a PR
25
  - Start recording `submitted_time` for eval requests
26
  - Limit AutoEvalColumn max-width
27
+
28
  ## [2023-05-30]
29
  - Add a citation button
30
  - Simplify Gradio layout
31
+
32
  ## [2023-05-29]
33
  - Auto-restart every hour for the latest results
34
  - Sync with the internal version (minor style changes)
35
+
36
  ## [2023-05-24]
37
  - Add a baseline that has 25.0 for all values
38
  - Add CHANGELOG
39
+
40
  ## [2023-05-23]
41
  - Fix a CSS issue that made the leaderboard hard to read in dark mode
42
+
43
  ## [2023-05-22]
44
  - Display a success/error message after submitting evaluation requests
45
  - Reject duplicate submission
46
  - Do not display results that have incomplete results
47
  - Display different queues for jobs that are RUNNING, PENDING, FINISHED status
48
+
49
  ## [2023-05-15]
50
  - Fix a typo: from "TruthQA" to "QA"
51
+
52
  ## [2023-05-10]
53
  - Fix a bug that prevented auto-refresh
54
+
55
  ## [2023-05-10]
56
  - Release the leaderboard to public
57
  """
 
60
 
61
  INTRODUCTION_TEXT = f"""
62
  📐 The 🤗 Open LLM Leaderboard aims to track, rank and evaluate LLMs and chatbots as they are released.
63
+
64
  🤗 Anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as the original LLaMa release.
65
+
66
  Other cool benchmarks for LLMs are developed at HuggingFace, go check them out: 🙋🤖 [human and GPT4 evals](https://huggingface.co/spaces/HuggingFaceH4/human_eval_llm_leaderboard), 🖥️ [performance benchmarks](https://huggingface.co/spaces/optimum/llm-perf-leaderboard)
 
67
  """
68
 
69
  LLM_BENCHMARKS_TEXT = f"""
70
  # Context
71
  With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
72
+
73
  📈 We evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
74
+
75
  - <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
76
  - <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
77
  - <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
78
  - <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
79
+
80
  For all these evaluations, a higher score is a better score.
81
  We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
82
+
83
  # Some good practices before submitting a model
84
+
85
  ### 1) Make sure you can load your model and tokenizer using AutoClasses:
86
  ```python
87
  from transformers import AutoConfig, AutoModel, AutoTokenizer
 
90
  tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
91
  ```
92
  If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
93
+
94
  Note: make sure your model is public!
95
  Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
96
+
97
  ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
98
  It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
99
+
100
  ### 3) Make sure your model has an open license!
101
  This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
102
+
103
  ### 4) Fill up your model card
104
  When we add extra information about models to the leaderboard, it will be automatically taken from the model card
105
+
106
  # Reproducibility and details
107
+
108
  ### Details and logs
109
  You can find:
110
  - detailed numerical results in the `results` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/results
111
  - details on the input/outputs for the models in the `details` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/details
112
  - community queries and running status in the `requests` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/requests
113
+
114
  ### Reproducibility
115
  To reproduce our results, here is the commands you can run, using [this version](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463) of the Eleuther AI Harness:
116
  `python main.py --model=hf-causal --model_args="pretrained=<your_model>,use_accelerate=True,revision=<your_model_revision>"`
117
  ` --tasks=<task_list> --num_fewshot=<n_few_shot> --batch_size=2 --output_path=<output_path>`
118
+
119
  The total batch size we get for models which fit on one A100 node is 16 (8 GPUs * 2). If you don't use parallelism, adapt your batch size to fit.
120
  *You can expect results to vary slightly for different batch sizes because of padding.*
121
+
122
  The tasks and few shots parameters are:
123
  - ARC: 25-shot, *arc-challenge* (`acc_norm`)
124
  - HellaSwag: 10-shot, *hellaswag* (`acc_norm`)
125
  - TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
126
+ - MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (average of all the results `acc`)
127
+
128
  ### Quantization
129
  To get more information about quantization, see:
130
  - 8 bits: [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), [paper](https://arxiv.org/abs/2208.07339)
131
  - 4 bits: [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes), [paper](https://arxiv.org/abs/2305.14314)
132
+
133
  ### Icons
134
+ {ModelType.PT.to_str(" : ")} model
135
+ {ModelType.FT.to_str(" : ")} model
136
+ {ModelType.IFT.to_str(" : ")} model
137
+ {ModelType.RL.to_str(" : ")} model
138
  If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
139
+
140
+
141
  # In case of model failure
142
  If your model is displayed in the `FAILED` category, its execution stopped.
143
  Make sure you have followed the above steps first.
144
  If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
145
+
146
  """
147
 
148
  EVALUATION_QUEUE_TEXT = f"""
src/auto_leaderboard/get_model_metadata.py CHANGED
@@ -53,4 +53,4 @@ def get_model_size(model_name, model_info):
53
 
54
  def apply_metadata(leaderboard_data: List[dict]):
55
  get_model_type(leaderboard_data)
56
- get_model_infos_from_hub(leaderboard_data)
 
53
 
54
  def apply_metadata(leaderboard_data: List[dict]):
55
  get_model_type(leaderboard_data)
56
+ get_model_infos_from_hub(leaderboard_data)
src/auto_leaderboard/load_results.py CHANGED
@@ -26,7 +26,7 @@ class EvalResult:
26
  model: str
27
  revision: str
28
  results: dict
29
- precision: str = "16bit"
30
  model_type: str = ""
31
  weight_type: str = ""
32
 
@@ -44,9 +44,7 @@ class EvalResult:
44
  data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
45
  data_dict[AutoEvalColumn.dummy.name] = base_model
46
  data_dict[AutoEvalColumn.revision.name] = self.revision
47
- data_dict[AutoEvalColumn.average.name] = round(
48
- sum([v for k, v in self.results.items()]) / 4.0, 1
49
- )
50
 
51
  for benchmark in BENCHMARKS:
52
  if benchmark not in self.results.keys():
@@ -76,28 +74,29 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
76
  model = config.get("model_args", None)
77
 
78
  model_sha = config.get("model_sha", "")
79
- eval_sha = config.get("lighteval_sha", "")
80
  model_split = model.split("/", 1)
81
 
 
 
82
  model = model_split[-1]
83
 
84
  if len(model_split) == 1:
85
  org = None
86
  model = model_split[0]
87
- result_key = f"{model}_{model_sha}_{eval_sha}"
88
  else:
89
  org = model_split[0]
90
  model = model_split[1]
91
- result_key = f"{org}_{model}_{model_sha}_{eval_sha}"
92
 
93
  eval_results = []
94
  for benchmark, metric in zip(BENCHMARKS, METRICS):
95
  accs = np.array([v[metric] for k, v in data["results"].items() if benchmark in k])
96
  if accs.size == 0:
97
  continue
98
- mean_acc = round(np.mean(accs) * 100.0, 1)
99
  eval_results.append(EvalResult(
100
- eval_name=result_key, org=org, model=model, revision=model_sha, results={benchmark: mean_acc}, #todo model_type=, weight_type=
101
  ))
102
 
103
  return result_key, eval_results
@@ -112,20 +111,15 @@ def get_eval_results(is_public) -> List[EvalResult]:
112
  continue
113
 
114
  # Sort the files by date
 
115
  try:
116
  files.sort(key=lambda x: dateutil.parser.parse(x.split("_", 1)[-1][:-5]))
117
  except dateutil.parser._parser.ParserError:
118
- up_to_date = files[-1]
119
-
120
- up_to_date = files[-1]
121
-
122
- if len(files) > 1:
123
- print(root)
124
- print(files)
125
- print(up_to_date)
126
- print("===")
127
 
128
- json_filepaths.append(os.path.join(root, up_to_date))
 
 
129
 
130
  eval_results = {}
131
  for json_filepath in json_filepaths:
@@ -144,4 +138,4 @@ def get_eval_results(is_public) -> List[EvalResult]:
144
  def get_eval_results_dicts(is_public=True) -> List[Dict]:
145
  eval_results = get_eval_results(is_public)
146
 
147
- return [e.to_dict() for e in eval_results]
 
26
  model: str
27
  revision: str
28
  results: dict
29
+ precision: str = ""
30
  model_type: str = ""
31
  weight_type: str = ""
32
 
 
44
  data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
45
  data_dict[AutoEvalColumn.dummy.name] = base_model
46
  data_dict[AutoEvalColumn.revision.name] = self.revision
47
+ data_dict[AutoEvalColumn.average.name] = sum([v for k, v in self.results.items()]) / 4.0
 
 
48
 
49
  for benchmark in BENCHMARKS:
50
  if benchmark not in self.results.keys():
 
74
  model = config.get("model_args", None)
75
 
76
  model_sha = config.get("model_sha", "")
 
77
  model_split = model.split("/", 1)
78
 
79
+ precision = config.get("model_dtype")
80
+
81
  model = model_split[-1]
82
 
83
  if len(model_split) == 1:
84
  org = None
85
  model = model_split[0]
86
+ result_key = f"{model}_{model_sha}_{precision}"
87
  else:
88
  org = model_split[0]
89
  model = model_split[1]
90
+ result_key = f"{org}_{model}_{model_sha}_{precision}"
91
 
92
  eval_results = []
93
  for benchmark, metric in zip(BENCHMARKS, METRICS):
94
  accs = np.array([v[metric] for k, v in data["results"].items() if benchmark in k])
95
  if accs.size == 0:
96
  continue
97
+ mean_acc = np.mean(accs) * 100.0
98
  eval_results.append(EvalResult(
99
+ eval_name=result_key, org=org, model=model, revision=model_sha, results={benchmark: mean_acc}, precision=precision, #todo model_type=, weight_type=
100
  ))
101
 
102
  return result_key, eval_results
 
111
  continue
112
 
113
  # Sort the files by date
114
+ # store results by precision maybe?
115
  try:
116
  files.sort(key=lambda x: dateutil.parser.parse(x.split("_", 1)[-1][:-5]))
117
  except dateutil.parser._parser.ParserError:
118
+ files = [files[-1]]
 
 
 
 
 
 
 
 
119
 
120
+ #up_to_date = files[-1]
121
+ for file in files:
122
+ json_filepaths.append(os.path.join(root, file))
123
 
124
  eval_results = {}
125
  for json_filepath in json_filepaths:
 
138
  def get_eval_results_dicts(is_public=True) -> List[Dict]:
139
  eval_results = get_eval_results(is_public)
140
 
141
+ return [e.to_dict() for e in eval_results]
src/auto_leaderboard/model_metadata_type.py CHANGED
@@ -1,5 +1,8 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
 
 
 
3
  from typing import Dict, List
4
 
5
  from ..utils_display import AutoEvalColumn
@@ -9,512 +12,568 @@ class ModelInfo:
9
  name: str
10
  symbol: str # emoji
11
 
 
 
 
 
 
 
12
 
13
  class ModelType(Enum):
14
  PT = ModelInfo(name="pretrained", symbol="🟢")
15
- SFT = ModelInfo(name="finetuned", symbol="🔶")
16
- RL = ModelInfo(name="with RL", symbol="🟦")
 
 
 
 
17
 
18
 
19
  TYPE_METADATA: Dict[str, ModelType] = {
20
- "notstoic/PygmalionCoT-7b": ModelType.SFT,
21
- "aisquared/dlite-v1-355m": ModelType.SFT,
22
- "aisquared/dlite-v1-1_5b": ModelType.SFT,
23
- "aisquared/dlite-v1-774m": ModelType.SFT,
24
- "aisquared/dlite-v1-124m": ModelType.SFT,
25
- "aisquared/chopt-2_7b": ModelType.SFT,
26
- "aisquared/dlite-v2-124m": ModelType.SFT,
27
- "aisquared/dlite-v2-774m": ModelType.SFT,
28
- "aisquared/dlite-v2-1_5b": ModelType.SFT,
29
- "aisquared/chopt-1_3b": ModelType.SFT,
30
- "aisquared/dlite-v2-355m": ModelType.SFT,
31
- "augtoma/qCammel-13": ModelType.SFT,
32
- "Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload": ModelType.SFT,
33
- "Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload": ModelType.SFT,
34
- "TheBloke/alpaca-lora-65B-HF": ModelType.SFT,
35
- "TheBloke/tulu-7B-fp16": ModelType.SFT,
36
- "TheBloke/guanaco-7B-HF": ModelType.SFT,
37
- "TheBloke/koala-7B-HF": ModelType.SFT,
38
- "TheBloke/wizardLM-7B-HF": ModelType.SFT,
39
- "TheBloke/airoboros-13B-HF": ModelType.SFT,
40
- "TheBloke/koala-13B-HF": ModelType.SFT,
41
- "TheBloke/Wizard-Vicuna-7B-Uncensored-HF": ModelType.SFT,
42
- "TheBloke/dromedary-65b-lora-HF": ModelType.SFT,
43
- "TheBloke/wizardLM-13B-1.0-fp16": ModelType.SFT,
44
- "TheBloke/Wizard-Vicuna-30B-Uncensored-fp16": ModelType.SFT,
45
- "TheBloke/wizard-vicuna-13B-HF": ModelType.SFT,
46
- "TheBloke/UltraLM-13B-fp16": ModelType.SFT,
47
- "TheBloke/OpenAssistant-SFT-7-Llama-30B-HF": ModelType.SFT,
48
- "TheBloke/vicuna-13B-1.1-HF": ModelType.SFT,
49
- "TheBloke/guanaco-13B-HF": ModelType.SFT,
50
- "TheBloke/guanaco-65B-HF": ModelType.SFT,
51
- "TheBloke/airoboros-7b-gpt4-fp16": ModelType.SFT,
52
- "TheBloke/Llama-2-13B-fp16": ModelType.PT,
53
- "TheBloke/llama-2-70b-Guanaco-QLoRA-fp16": ModelType.SFT,
54
- "TheBloke/Planner-7B-fp16": ModelType.SFT,
55
- "TheBloke/Wizard-Vicuna-13B-Uncensored-HF": ModelType.SFT,
56
- "TheBloke/gpt4-alpaca-lora-13B-HF": ModelType.SFT,
57
- "TheBloke/gpt4-x-vicuna-13B-HF": ModelType.SFT,
58
- "TheBloke/gpt4-alpaca-lora_mlp-65B-HF": ModelType.SFT,
59
- "TheBloke/tulu-13B-fp16": ModelType.SFT,
60
- "TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16": ModelType.SFT,
61
- "jphme/orca_mini_v2_ger_7b": ModelType.SFT,
62
- "Ejafa/vicuna_7B_vanilla_1.1": ModelType.SFT,
63
- "kevinpro/Vicuna-13B-CoT": ModelType.SFT,
64
- "AlekseyKorshuk/pygmalion-6b-vicuna-chatml": ModelType.SFT,
65
- "AlekseyKorshuk/chatml-pyg-v1": ModelType.SFT,
66
- "concedo/Vicuzard-30B-Uncensored": ModelType.SFT,
67
- "concedo/OPT-19M-ChatSalad": ModelType.SFT,
68
- "concedo/Pythia-70M-ChatSalad": ModelType.SFT,
69
- "digitous/13B-HyperMantis": ModelType.SFT,
70
- "digitous/Adventien-GPTJ": ModelType.SFT,
71
- "digitous/Alpacino13b": ModelType.SFT,
72
- "digitous/GPT-R": ModelType.SFT,
73
- "digitous/Javelin-R": ModelType.SFT,
74
- "digitous/Javalion-GPTJ": ModelType.SFT,
75
- "digitous/Javalion-R": ModelType.SFT,
76
- "digitous/Skegma-GPTJ": ModelType.SFT,
77
- "digitous/Alpacino30b": ModelType.SFT,
78
- "digitous/Janin-GPTJ": ModelType.SFT,
79
- "digitous/Janin-R": ModelType.SFT,
80
- "digitous/Javelin-GPTJ": ModelType.SFT,
81
- "SaylorTwift/gpt2_test": ModelType.PT,
82
- "anton-l/gpt-j-tiny-random": ModelType.SFT,
83
- "Andron00e/YetAnother_Open-Llama-3B-LoRA-OpenOrca": ModelType.SFT,
84
- "Lazycuber/pyg-instruct-wizardlm": ModelType.SFT,
85
- "Lazycuber/Janemalion-6B": ModelType.SFT,
86
- "IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1": ModelType.SFT,
87
- "IDEA-CCNL/Ziya-LLaMA-13B-v1": ModelType.SFT,
88
- "dsvv-cair/alpaca-cleaned-llama-30b-bf16": ModelType.SFT,
89
- "gpt2-medium": ModelType.PT,
90
- "camel-ai/CAMEL-13B-Combined-Data": ModelType.SFT,
91
- "camel-ai/CAMEL-13B-Role-Playing-Data": ModelType.SFT,
92
- "PygmalionAI/pygmalion-6b": ModelType.SFT,
93
- "PygmalionAI/metharme-1.3b": ModelType.SFT,
94
- "PygmalionAI/pygmalion-1.3b": ModelType.SFT,
95
- "PygmalionAI/pygmalion-350m": ModelType.SFT,
96
- "PygmalionAI/pygmalion-2.7b": ModelType.SFT,
97
- "medalpaca/medalpaca-7b": ModelType.SFT,
98
- "lilloukas/Platypus-30B": ModelType.SFT,
99
- "lilloukas/GPlatty-30B": ModelType.SFT,
100
- "mncai/chatdoctor": ModelType.SFT,
101
- "chaoyi-wu/MedLLaMA_13B": ModelType.SFT,
102
- "LoupGarou/WizardCoder-Guanaco-15B-V1.0": ModelType.SFT,
103
- "LoupGarou/WizardCoder-Guanaco-15B-V1.1": ModelType.SFT,
104
- "hakurei/instruct-12b": ModelType.SFT,
105
- "hakurei/lotus-12B": ModelType.SFT,
106
- "shibing624/chinese-llama-plus-13b-hf": ModelType.SFT,
107
- "shibing624/chinese-alpaca-plus-7b-hf": ModelType.SFT,
108
- "shibing624/chinese-alpaca-plus-13b-hf": ModelType.SFT,
109
- "mosaicml/mpt-7b-instruct": ModelType.SFT,
110
- "mosaicml/mpt-30b-chat": ModelType.SFT,
111
- "mosaicml/mpt-7b-storywriter": ModelType.SFT,
112
- "mosaicml/mpt-30b-instruct": ModelType.SFT,
113
- "mosaicml/mpt-7b-chat": ModelType.SFT,
114
- "mosaicml/mpt-30b": ModelType.PT,
115
- "Corianas/111m": ModelType.SFT,
116
- "Corianas/Quokka_1.3b": ModelType.SFT,
117
- "Corianas/256_5epoch": ModelType.SFT,
118
- "Corianas/Quokka_256m": ModelType.SFT,
119
- "Corianas/Quokka_590m": ModelType.SFT,
120
- "Corianas/gpt-j-6B-Dolly": ModelType.SFT,
121
- "Corianas/Quokka_2.7b": ModelType.SFT,
122
- "cyberagent/open-calm-7b": ModelType.SFT,
123
- "Aspik101/Nous-Hermes-13b-pl-lora_unload": ModelType.SFT,
124
- "THUDM/chatglm2-6b": ModelType.SFT,
125
- "MetaIX/GPT4-X-Alpasta-30b": ModelType.SFT,
126
- "NYTK/PULI-GPTrio": ModelType.PT,
127
- "EleutherAI/pythia-1.3b": ModelType.PT,
128
- "EleutherAI/pythia-2.8b-deduped": ModelType.PT,
129
- "EleutherAI/gpt-neo-125m": ModelType.PT,
130
- "EleutherAI/pythia-160m": ModelType.PT,
131
- "EleutherAI/gpt-neo-2.7B": ModelType.PT,
132
- "EleutherAI/pythia-1b-deduped": ModelType.PT,
133
- "EleutherAI/pythia-6.7b": ModelType.PT,
134
- "EleutherAI/pythia-70m-deduped": ModelType.PT,
135
- "EleutherAI/gpt-neox-20b": ModelType.PT,
136
- "EleutherAI/pythia-1.4b-deduped": ModelType.PT,
137
- "EleutherAI/pythia-2.7b": ModelType.PT,
138
- "EleutherAI/pythia-6.9b-deduped": ModelType.PT,
139
- "EleutherAI/pythia-70m": ModelType.PT,
140
- "EleutherAI/gpt-j-6b": ModelType.PT,
141
- "EleutherAI/pythia-12b-deduped": ModelType.PT,
142
- "EleutherAI/gpt-neo-1.3B": ModelType.PT,
143
- "EleutherAI/pythia-410m-deduped": ModelType.PT,
144
- "EleutherAI/pythia-160m-deduped": ModelType.PT,
145
- "EleutherAI/polyglot-ko-12.8b": ModelType.PT,
146
- "EleutherAI/pythia-12b": ModelType.PT,
147
- "roneneldan/TinyStories-33M": ModelType.PT,
148
- "roneneldan/TinyStories-28M": ModelType.PT,
149
- "roneneldan/TinyStories-1M": ModelType.PT,
150
- "roneneldan/TinyStories-8M": ModelType.PT,
151
- "roneneldan/TinyStories-3M": ModelType.PT,
152
- "jerryjalapeno/nart-100k-7b": ModelType.SFT,
153
- "lmsys/vicuna-13b-v1.3": ModelType.SFT,
154
- "lmsys/vicuna-7b-v1.3": ModelType.SFT,
155
- "lmsys/vicuna-13b-v1.1": ModelType.SFT,
156
- "lmsys/vicuna-13b-delta-v1.1": ModelType.SFT,
157
- "lmsys/vicuna-7b-delta-v1.1": ModelType.SFT,
158
- "abhiramtirumala/DialoGPT-sarcastic-medium": ModelType.SFT,
159
- "haonan-li/bactrian-x-llama-13b-merged": ModelType.SFT,
160
- "Gryphe/MythoLogic-13b": ModelType.SFT,
161
- "Gryphe/MythoBoros-13b": ModelType.SFT,
162
- "pillowtalks-ai/delta13b": ModelType.SFT,
163
- "wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard": ModelType.SFT,
164
- "bigcode/tiny_starcoder_py": ModelType.PT,
165
- "bigcode/starcoderplus": ModelType.SFT,
166
- "bigcode/gpt_bigcode-santacoder": ModelType.PT,
167
- "bigcode/starcoder": ModelType.PT,
168
- "Open-Orca/OpenOrca-Preview1-13B": ModelType.SFT,
169
- "microsoft/DialoGPT-large": ModelType.SFT,
170
- "microsoft/DialoGPT-small": ModelType.SFT,
171
- "microsoft/DialoGPT-medium": ModelType.SFT,
172
- "microsoft/CodeGPT-small-py": ModelType.SFT,
173
- "Tincando/fiction_story_generator": ModelType.SFT,
174
- "Pirr/pythia-13b-deduped-green_devil": ModelType.SFT,
175
- "Aeala/GPT4-x-AlpacaDente2-30b": ModelType.SFT,
176
- "Aeala/GPT4-x-AlpacaDente-30b": ModelType.SFT,
177
- "Aeala/GPT4-x-Alpasta-13b": ModelType.SFT,
178
- "Aeala/VicUnlocked-alpaca-30b": ModelType.SFT,
179
- "Tap-M/Luna-AI-Llama2-Uncensored": ModelType.SFT,
180
- "illuin/test-custom-llama": ModelType.SFT,
181
- "dvruette/oasst-llama-13b-2-epochs": ModelType.SFT,
182
- "dvruette/oasst-gpt-neox-20b-1000-steps": ModelType.SFT,
183
- "dvruette/llama-13b-pretrained-dropout": ModelType.PT,
184
- "dvruette/llama-13b-pretrained": ModelType.PT,
185
- "dvruette/llama-13b-pretrained-sft-epoch-1": ModelType.PT,
186
- "dvruette/llama-13b-pretrained-sft-do2": ModelType.PT,
187
- "dvruette/oasst-gpt-neox-20b-3000-steps": ModelType.SFT,
188
- "dvruette/oasst-pythia-12b-pretrained-sft": ModelType.PT,
189
- "dvruette/oasst-pythia-6.9b-4000-steps": ModelType.SFT,
190
- "dvruette/gpt-neox-20b-full-precision": ModelType.SFT,
191
- "dvruette/oasst-llama-13b-1000-steps": ModelType.SFT,
192
- "openlm-research/open_llama_7b_700bt_preview": ModelType.PT,
193
- "openlm-research/open_llama_7b": ModelType.PT,
194
- "openlm-research/open_llama_7b_v2": ModelType.PT,
195
- "openlm-research/open_llama_3b": ModelType.PT,
196
- "openlm-research/open_llama_13b": ModelType.PT,
197
- "openlm-research/open_llama_3b_v2": ModelType.PT,
198
- "PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged": ModelType.SFT,
199
- "GeorgiaTechResearchInstitute/galpaca-30b": ModelType.SFT,
200
- "GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct": ModelType.SFT,
201
- "databricks/dolly-v2-7b": ModelType.SFT,
202
- "databricks/dolly-v2-3b": ModelType.SFT,
203
- "databricks/dolly-v2-12b": ModelType.SFT,
204
- "Rachneet/gpt2-xl-alpaca": ModelType.SFT,
205
- "Locutusque/gpt2-conversational-or-qa": ModelType.SFT,
206
- "psyche/kogpt": ModelType.SFT,
207
- "NbAiLab/nb-gpt-j-6B-alpaca": ModelType.SFT,
208
- "Mikael110/llama-2-7b-guanaco-fp16": ModelType.SFT,
209
- "Mikael110/llama-2-13b-guanaco-fp16": ModelType.SFT,
210
- "Fredithefish/CrimsonPajama": ModelType.SFT,
211
- "Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K": ModelType.SFT,
212
- "Fredithefish/ScarletPajama-3B-HF": ModelType.SFT,
213
- "Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4": ModelType.SFT,
214
- "eachadea/vicuna-13b-1.1": ModelType.SFT,
215
- "eachadea/vicuna-7b-1.1": ModelType.SFT,
216
- "eachadea/vicuna-13b": ModelType.SFT,
217
- "openaccess-ai-collective/wizard-mega-13b": ModelType.SFT,
218
- "openaccess-ai-collective/manticore-13b": ModelType.SFT,
219
- "openaccess-ai-collective/manticore-30b-chat-pyg-alpha": ModelType.SFT,
220
- "openaccess-ai-collective/minotaur-13b": ModelType.SFT,
221
- "openaccess-ai-collective/minotaur-13b-fixed": ModelType.SFT,
222
- "openaccess-ai-collective/hippogriff-30b-chat": ModelType.SFT,
223
- "openaccess-ai-collective/manticore-13b-chat-pyg": ModelType.SFT,
224
- "pythainlp/wangchanglm-7.5B-sft-enth": ModelType.SFT,
225
- "pythainlp/wangchanglm-7.5B-sft-en-sharded": ModelType.SFT,
226
- "euclaise/gpt-neox-122m-minipile-digits": ModelType.SFT,
227
- "stabilityai/StableBeluga1-Delta": ModelType.SFT,
228
- "stabilityai/stablelm-tuned-alpha-7b": ModelType.SFT,
229
- "stabilityai/StableBeluga2": ModelType.SFT,
230
- "stabilityai/stablelm-base-alpha-7b": ModelType.PT,
231
- "stabilityai/stablelm-base-alpha-3b": ModelType.PT,
232
- "stabilityai/stablelm-tuned-alpha-3b": ModelType.SFT,
233
- "alibidaran/medical_transcription_generator": ModelType.SFT,
234
- "CalderaAI/30B-Lazarus": ModelType.SFT,
235
- "CalderaAI/13B-BlueMethod": ModelType.SFT,
236
- "CalderaAI/13B-Ouroboros": ModelType.SFT,
237
- "KoboldAI/OPT-13B-Erebus": ModelType.SFT,
238
- "KoboldAI/GPT-J-6B-Janeway": ModelType.SFT,
239
- "KoboldAI/GPT-J-6B-Shinen": ModelType.SFT,
240
- "KoboldAI/fairseq-dense-2.7B": ModelType.PT,
241
- "KoboldAI/OPT-6B-nerys-v2": ModelType.SFT,
242
- "KoboldAI/GPT-NeoX-20B-Skein": ModelType.SFT,
243
- "KoboldAI/PPO_Pygway-6b-Mix": ModelType.SFT,
244
- "KoboldAI/fairseq-dense-6.7B": ModelType.PT,
245
- "KoboldAI/fairseq-dense-125M": ModelType.PT,
246
- "KoboldAI/OPT-13B-Nerybus-Mix": ModelType.SFT,
247
- "KoboldAI/OPT-2.7B-Erebus": ModelType.SFT,
248
- "KoboldAI/OPT-350M-Nerys-v2": ModelType.SFT,
249
- "KoboldAI/OPT-2.7B-Nerys-v2": ModelType.SFT,
250
- "KoboldAI/OPT-2.7B-Nerybus-Mix": ModelType.SFT,
251
- "KoboldAI/OPT-13B-Nerys-v2": ModelType.SFT,
252
- "KoboldAI/GPT-NeoX-20B-Erebus": ModelType.SFT,
253
- "KoboldAI/OPT-6.7B-Erebus": ModelType.SFT,
254
- "KoboldAI/fairseq-dense-355M": ModelType.PT,
255
- "KoboldAI/OPT-6.7B-Nerybus-Mix": ModelType.SFT,
256
- "KoboldAI/GPT-J-6B-Adventure": ModelType.SFT,
257
- "KoboldAI/OPT-350M-Erebus": ModelType.SFT,
258
- "KoboldAI/GPT-J-6B-Skein": ModelType.SFT,
259
- "KoboldAI/OPT-30B-Erebus": ModelType.SFT,
260
- "klosax/pythia-160m-deduped-step92k-193bt": ModelType.PT,
261
- "klosax/open_llama_3b_350bt_preview": ModelType.PT,
262
- "klosax/openllama-3b-350bt": ModelType.PT,
263
- "klosax/pythia-70m-deduped-step44k-92bt": ModelType.PT,
264
- "klosax/open_llama_13b_600bt_preview": ModelType.PT,
265
- "klosax/open_llama_7b_400bt_preview": ModelType.PT,
266
- "kfkas/Llama-2-ko-7b-Chat": ModelType.SFT,
267
- "WeOpenML/Alpaca-7B-v1": ModelType.SFT,
268
- "WeOpenML/PandaLM-Alpaca-7B-v1": ModelType.SFT,
269
- "TFLai/gpt2-turkish-uncased": ModelType.SFT,
270
- "ehartford/WizardLM-13B-Uncensored": ModelType.SFT,
271
- "ehartford/dolphin-llama-13b": ModelType.SFT,
272
- "ehartford/Wizard-Vicuna-30B-Uncensored": ModelType.SFT,
273
- "ehartford/WizardLM-30B-Uncensored": ModelType.SFT,
274
- "ehartford/Wizard-Vicuna-13B-Uncensored": ModelType.SFT,
275
- "ehartford/WizardLM-7B-Uncensored": ModelType.SFT,
276
- "ehartford/based-30b": ModelType.SFT,
277
- "ehartford/Wizard-Vicuna-7B-Uncensored": ModelType.SFT,
278
- "wahaha1987/llama_7b_sharegpt94k_fastchat": ModelType.SFT,
279
- "wahaha1987/llama_13b_sharegpt94k_fastchat": ModelType.SFT,
280
- "OpenAssistant/oasst-sft-1-pythia-12b": ModelType.SFT,
281
- "OpenAssistant/stablelm-7b-sft-v7-epoch-3": ModelType.SFT,
282
- "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5": ModelType.SFT,
283
- "OpenAssistant/pythia-12b-sft-v8-2.5k-steps": ModelType.SFT,
284
- "OpenAssistant/pythia-12b-sft-v8-7k-steps": ModelType.SFT,
285
- "OpenAssistant/pythia-12b-pre-v8-12.5k-steps": ModelType.SFT,
286
- "OpenAssistant/llama2-13b-orca-8k-3319": ModelType.SFT,
287
- "junelee/wizard-vicuna-13b": ModelType.SFT,
288
- "BreadAi/gpt-YA-1-1_160M": ModelType.PT,
289
- "BreadAi/MuseCan": ModelType.PT,
290
- "BreadAi/MusePy-1-2": ModelType.PT,
291
- "BreadAi/DiscordPy": ModelType.PT,
292
- "BreadAi/PM_modelV2": ModelType.PT,
293
- "BreadAi/gpt-Youtube": ModelType.PT,
294
- "BreadAi/StoryPy": ModelType.SFT,
295
- "julianweng/Llama-2-7b-chat-orcah": ModelType.SFT,
296
- "AGI-inc/lora_moe_7b_baseline": ModelType.SFT,
297
- "AGI-inc/lora_moe_7b": ModelType.SFT,
298
- "togethercomputer/GPT-NeoXT-Chat-Base-20B": ModelType.SFT,
299
- "togethercomputer/RedPajama-INCITE-Chat-7B-v0.1": ModelType.SFT,
300
- "togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1": ModelType.SFT,
301
- "togethercomputer/RedPajama-INCITE-7B-Base": ModelType.PT,
302
- "togethercomputer/RedPajama-INCITE-7B-Instruct": ModelType.SFT,
303
- "togethercomputer/RedPajama-INCITE-Base-3B-v1": ModelType.PT,
304
- "togethercomputer/Pythia-Chat-Base-7B": ModelType.SFT,
305
- "togethercomputer/RedPajama-INCITE-Base-7B-v0.1": ModelType.PT,
306
- "togethercomputer/GPT-JT-6B-v1": ModelType.SFT,
307
- "togethercomputer/GPT-JT-6B-v0": ModelType.SFT,
308
- "togethercomputer/RedPajama-INCITE-Chat-3B-v1": ModelType.SFT,
309
- "togethercomputer/RedPajama-INCITE-7B-Chat": ModelType.SFT,
310
- "togethercomputer/RedPajama-INCITE-Instruct-3B-v1": ModelType.SFT,
311
- "Writer/camel-5b-hf": ModelType.SFT,
312
- "Writer/palmyra-base": ModelType.PT,
313
- "MBZUAI/LaMini-GPT-1.5B": ModelType.SFT,
314
- "MBZUAI/lamini-cerebras-111m": ModelType.SFT,
315
- "MBZUAI/lamini-neo-1.3b": ModelType.SFT,
316
- "MBZUAI/lamini-cerebras-1.3b": ModelType.SFT,
317
- "MBZUAI/lamini-cerebras-256m": ModelType.SFT,
318
- "MBZUAI/LaMini-GPT-124M": ModelType.SFT,
319
- "MBZUAI/lamini-neo-125m": ModelType.SFT,
320
- "TehVenom/DiffMerge-DollyGPT-Pygmalion": ModelType.SFT,
321
- "TehVenom/PPO_Shygmalion-6b": ModelType.SFT,
322
- "TehVenom/Dolly_Shygmalion-6b-Dev_V8P2": ModelType.SFT,
323
- "TehVenom/Pygmalion_AlpacaLora-7b": ModelType.SFT,
324
- "TehVenom/PPO_Pygway-V8p4_Dev-6b": ModelType.SFT,
325
- "TehVenom/Dolly_Malion-6b": ModelType.SFT,
326
- "TehVenom/PPO_Shygmalion-V8p4_Dev-6b": ModelType.SFT,
327
- "TehVenom/ChanMalion": ModelType.SFT,
328
- "TehVenom/GPT-J-Pyg_PPO-6B": ModelType.SFT,
329
- "TehVenom/Pygmalion-13b-Merged": ModelType.SFT,
330
- "TehVenom/Metharme-13b-Merged": ModelType.SFT,
331
- "TehVenom/Dolly_Shygmalion-6b": ModelType.SFT,
332
- "TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4": ModelType.SFT,
333
- "georgesung/llama2_7b_chat_uncensored": ModelType.SFT,
334
- "vicgalle/gpt2-alpaca": ModelType.SFT,
335
- "vicgalle/alpaca-7b": ModelType.SFT,
336
- "vicgalle/gpt2-alpaca-gpt4": ModelType.SFT,
337
- "facebook/opt-350m": ModelType.PT,
338
- "facebook/opt-125m": ModelType.PT,
339
- "facebook/xglm-4.5B": ModelType.PT,
340
- "facebook/opt-2.7b": ModelType.PT,
341
- "facebook/opt-6.7b": ModelType.PT,
342
- "facebook/galactica-30b": ModelType.PT,
343
- "facebook/opt-13b": ModelType.PT,
344
- "facebook/opt-66b": ModelType.PT,
345
- "facebook/xglm-7.5B": ModelType.PT,
346
- "facebook/xglm-564M": ModelType.PT,
347
- "facebook/opt-30b": ModelType.PT,
348
- "golaxy/gogpt-7b": ModelType.SFT,
349
- "golaxy/gogpt2-7b": ModelType.SFT,
350
- "psmathur/orca_mini_v2_7b": ModelType.SFT,
351
- "psmathur/orca_mini_7b": ModelType.SFT,
352
- "psmathur/orca_mini_3b": ModelType.SFT,
353
- "psmathur/orca_mini_v2_13b": ModelType.SFT,
354
- "gpt2-xl": ModelType.PT,
355
- "lxe/Cerebras-GPT-2.7B-Alpaca-SP": ModelType.SFT,
356
- "Monero/Manticore-13b-Chat-Pyg-Guanaco": ModelType.SFT,
357
- "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b": ModelType.SFT,
358
- "Monero/WizardLM-13b-OpenAssistant-Uncensored": ModelType.SFT,
359
- "Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b": ModelType.SFT,
360
- "jzjiao/opt-1.3b-rlhf": ModelType.SFT,
361
- "HuggingFaceH4/starchat-beta": ModelType.SFT,
362
- "KnutJaegersberg/gpt-2-xl-EvolInstruct": ModelType.SFT,
363
- "KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct": ModelType.SFT,
364
- "KnutJaegersberg/galactica-orca-wizardlm-1.3b": ModelType.SFT,
365
- "openchat/openchat_8192": ModelType.SFT,
366
- "openchat/openchat_v2": ModelType.SFT,
367
- "openchat/openchat_v2_w": ModelType.SFT,
368
- "ausboss/llama-13b-supercot": ModelType.SFT,
369
- "ausboss/llama-30b-supercot": ModelType.SFT,
370
- "Neko-Institute-of-Science/metharme-7b": ModelType.SFT,
371
- "Neko-Institute-of-Science/pygmalion-7b": ModelType.SFT,
372
- "SebastianSchramm/Cerebras-GPT-111M-instruction": ModelType.SFT,
373
- "victor123/WizardLM-13B-1.0": ModelType.SFT,
374
- "OpenBuddy/openbuddy-openllama-13b-v7-fp16": ModelType.SFT,
375
- "OpenBuddy/openbuddy-llama2-13b-v8.1-fp16": ModelType.SFT,
376
- "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16": ModelType.SFT,
377
- "baichuan-inc/Baichuan-7B": ModelType.PT,
378
- "tiiuae/falcon-40b-instruct": ModelType.SFT,
379
- "tiiuae/falcon-40b": ModelType.PT,
380
- "tiiuae/falcon-7b": ModelType.PT,
381
- "YeungNLP/firefly-llama-13b": ModelType.SFT,
382
- "YeungNLP/firefly-llama-13b-v1.2": ModelType.SFT,
383
- "YeungNLP/firefly-llama2-13b": ModelType.SFT,
384
- "YeungNLP/firefly-ziya-13b": ModelType.SFT,
385
- "shaohang/Sparse0.5_OPT-1.3": ModelType.SFT,
386
- "xzuyn/Alpacino-SuperCOT-13B": ModelType.SFT,
387
- "xzuyn/MedicWizard-7B": ModelType.SFT,
388
- "xDAN-AI/xDAN_13b_l2_lora": ModelType.SFT,
389
- "beomi/KoAlpaca-Polyglot-5.8B": ModelType.SFT,
390
- "beomi/llama-2-ko-7b": ModelType.SFT,
391
- "Salesforce/codegen-6B-multi": ModelType.PT,
392
- "Salesforce/codegen-16B-nl": ModelType.PT,
393
- "Salesforce/codegen-6B-nl": ModelType.PT,
394
- "ai-forever/rugpt3large_based_on_gpt2": ModelType.SFT,
395
- "gpt2-large": ModelType.PT,
396
- "frank098/orca_mini_3b_juniper": ModelType.SFT,
397
- "frank098/WizardLM_13B_juniper": ModelType.SFT,
398
- "FPHam/Free_Sydney_13b_HF": ModelType.SFT,
399
- "huggingface/llama-13b": ModelType.PT,
400
- "huggingface/llama-7b": ModelType.PT,
401
- "huggingface/llama-65b": ModelType.PT,
402
- "huggingface/llama-65b": ModelType.PT,
403
- "huggingface/llama-30b": ModelType.PT,
404
- "jondurbin/airoboros-13b-gpt4-1.4": ModelType.SFT,
405
- "jondurbin/airoboros-7b": ModelType.SFT,
406
- "jondurbin/airoboros-7b-gpt4-1.4": ModelType.SFT,
407
- "jondurbin/airoboros-l2-7b-gpt4-1.4.1": ModelType.SFT,
408
- "jondurbin/airoboros-l2-13b-gpt4-1.4.1": ModelType.SFT,
409
- "jondurbin/airoboros-l2-70b-gpt4-1.4.1": ModelType.SFT,
410
- "jondurbin/airoboros-13b": ModelType.SFT,
411
- "jondurbin/airoboros-65b-gpt4-1.2": ModelType.SFT,
412
- "ariellee/SuperPlatty-30B": ModelType.SFT,
413
- "danielhanchen/open_llama_3b_600bt_preview": ModelType.SFT,
414
- "cerebras/Cerebras-GPT-256M": ModelType.PT,
415
- "cerebras/Cerebras-GPT-1.3B": ModelType.PT,
416
- "cerebras/Cerebras-GPT-13B": ModelType.PT,
417
- "cerebras/Cerebras-GPT-2.7B": ModelType.PT,
418
- "cerebras/Cerebras-GPT-111M": ModelType.PT,
419
- "cerebras/Cerebras-GPT-6.7B": ModelType.PT,
420
- "Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf": ModelType.RL,
421
- "Yhyu13/llama-30B-hf-openassitant": ModelType.SFT,
422
- "NousResearch/Nous-Hermes-Llama2-13b": ModelType.SFT,
423
- "NousResearch/Redmond-Puffin-13B": ModelType.SFT,
424
- "NousResearch/Nous-Hermes-13b": ModelType.SFT,
425
- "project-baize/baize-v2-7b": ModelType.SFT,
426
- "project-baize/baize-v2-13b": ModelType.SFT,
427
- "LLMs/WizardLM-13B-V1.0": ModelType.SFT,
428
- "LLMs/AlpacaGPT4-7B-elina": ModelType.SFT,
429
- "wenge-research/yayi-7b-llama2": ModelType.SFT,
430
- "wenge-research/yayi-13b-llama2": ModelType.SFT,
431
- "yhyhy3/open_llama_7b_v2_med_instruct": ModelType.SFT,
432
- "llama-anon/instruct-13b": ModelType.SFT,
433
- "huggingtweets/jerma985": ModelType.SFT,
434
- "huggingtweets/gladosystem": ModelType.SFT,
435
- "huggingtweets/bladeecity-jerma985": ModelType.SFT,
436
- "huggyllama/llama-13b": ModelType.PT,
437
- "huggyllama/llama-65b": ModelType.PT,
438
- "FabbriSimo01/Facebook_opt_1.3b_Quantized": ModelType.PT,
439
- "upstage/llama-30b-instruct-2048": ModelType.SFT,
440
- "upstage/llama-30b-instruct": ModelType.SFT,
441
- "WizardLM/WizardLM-13B-1.0": ModelType.SFT,
442
- "WizardLM/WizardLM-13B-V1.1": ModelType.SFT,
443
- "WizardLM/WizardLM-13B-V1.2": ModelType.SFT,
444
- "WizardLM/WizardLM-30B-V1.0": ModelType.SFT,
445
- "WizardLM/WizardCoder-15B-V1.0": ModelType.SFT,
446
- "gpt2": ModelType.PT,
447
- "keyfan/vicuna-chinese-replication-v1.1": ModelType.SFT,
448
- "nthngdy/pythia-owt2-70m-100k": ModelType.SFT,
449
- "nthngdy/pythia-owt2-70m-50k": ModelType.SFT,
450
- "quantumaikr/KoreanLM-hf": ModelType.SFT,
451
- "quantumaikr/open_llama_7b_hf": ModelType.SFT,
452
- "MayaPH/FinOPT-Lincoln": ModelType.SFT,
453
- "MayaPH/FinOPT-Franklin": ModelType.SFT,
454
- "MayaPH/GodziLLa-30B": ModelType.SFT,
455
- "MayaPH/GodziLLa-30B-plus": ModelType.SFT,
456
- "MayaPH/FinOPT-Washington": ModelType.SFT,
457
- "ogimgio/gpt-neo-125m-neurallinguisticpioneers": ModelType.SFT,
458
- "layoric/llama-2-13b-code-alpaca": ModelType.SFT,
459
- "CobraMamba/mamba-gpt-3b": ModelType.SFT,
460
- "CobraMamba/mamba-gpt-3b-v2": ModelType.SFT,
461
- "timdettmers/guanaco-33b-merged": ModelType.SFT,
462
- "elinas/chronos-33b": ModelType.SFT,
463
- "heegyu/RedTulu-Uncensored-3B-0719": ModelType.SFT,
464
- "heegyu/WizardVicuna-Uncensored-3B-0719": ModelType.SFT,
465
- "heegyu/WizardVicuna-3B-0719": ModelType.SFT,
466
- "meta-llama/Llama-2-7b-chat-hf": ModelType.RL,
467
- "meta-llama/Llama-2-7b-hf": ModelType.PT,
468
- "meta-llama/Llama-2-13b-chat-hf": ModelType.RL,
469
- "meta-llama/Llama-2-13b-hf": ModelType.PT,
470
- "meta-llama/Llama-2-70b-chat-hf": ModelType.RL,
471
- "meta-llama/Llama-2-70b-hf": ModelType.PT,
472
- "xhyi/PT_GPTNEO350_ATG": ModelType.SFT,
473
- "h2oai/h2ogpt-gm-oasst1-en-1024-20b": ModelType.SFT,
474
- "h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt": ModelType.SFT,
475
- "h2oai/h2ogpt-oig-oasst1-512-6_9b": ModelType.SFT,
476
- "h2oai/h2ogpt-oasst1-512-12b": ModelType.SFT,
477
- "h2oai/h2ogpt-oig-oasst1-256-6_9b": ModelType.SFT,
478
- "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt": ModelType.SFT,
479
- "h2oai/h2ogpt-oasst1-512-20b": ModelType.SFT,
480
- "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2": ModelType.SFT,
481
- "h2oai/h2ogpt-gm-oasst1-en-1024-12b": ModelType.SFT,
482
- "h2oai/h2ogpt-gm-oasst1-multilang-1024-20b": ModelType.SFT,
483
- "bofenghuang/vigogne-13b-instruct": ModelType.SFT,
484
- "bofenghuang/vigogne-13b-chat": ModelType.SFT,
485
- "bofenghuang/vigogne-2-7b-instruct": ModelType.SFT,
486
- "bofenghuang/vigogne-7b-instruct": ModelType.SFT,
487
- "bofenghuang/vigogne-7b-chat": ModelType.SFT,
488
- "Vmware/open-llama-7b-v2-open-instruct": ModelType.SFT,
489
- "VMware/open-llama-0.7T-7B-open-instruct-v1.1": ModelType.SFT,
490
- "ewof/koishi-instruct-3b": ModelType.SFT,
491
- "gywy/llama2-13b-chinese-v1": ModelType.SFT,
492
- "GOAT-AI/GOAT-7B-Community": ModelType.SFT,
493
- "psyche/kollama2-7b": ModelType.SFT,
494
- "TheTravellingEngineer/llama2-7b-hf-guanaco": ModelType.SFT,
495
- "64bits/LexPodLM-13B": ModelType.SFT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
  }
497
 
498
 
499
  def get_model_type(leaderboard_data: List[dict]):
500
  for model_data in leaderboard_data:
501
  # Todo @clefourrier once requests are connected with results
502
- is_delta = False # (model_data["weight_type"] != "Original")
503
  # Stored information
504
- if model_data["model_name_for_query"] in TYPE_METADATA:
505
- model_data[AutoEvalColumn.model_type.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
506
- model_data[AutoEvalColumn.model_type_symbol.name] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol + ("🔺" if is_delta else "")
507
- # Inferred from the name or the selected type
508
- elif model_data[AutoEvalColumn.model_type.name] == "pretrained" or any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
509
- model_data[AutoEvalColumn.model_type.name] = ModelType.PT.value.name
510
- model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.PT.value.symbol + ("🔺" if is_delta else "")
511
- elif model_data[AutoEvalColumn.model_type.name] == "finetuned" or any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
512
- model_data[AutoEvalColumn.model_type.name] = ModelType.SFT.value.name
513
- model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.SFT.value.symbol + ("🔺" if is_delta else "")
514
- elif model_data[AutoEvalColumn.model_type.name] == "with RL" or any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
515
- model_data[AutoEvalColumn.model_type.name] = ModelType.RL.value.name
516
- model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.RL.value.symbol + ("🔺" if is_delta else "")
517
- else:
518
- model_data[AutoEvalColumn.model_type.name] = "N/A"
519
- model_data[AutoEvalColumn.model_type_symbol.name] = ("🔺" if is_delta else "")
520
-
 
 
 
 
 
 
 
 
 
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
+ import glob
4
+ import json
5
+ import os
6
  from typing import Dict, List
7
 
8
  from ..utils_display import AutoEvalColumn
 
12
  name: str
13
  symbol: str # emoji
14
 
15
+ model_type_symbols = {
16
+ "fine-tuned": "🔶",
17
+ "pretrained": "🟢",
18
+ "RL-tuned": "🟦",
19
+ "instruction-tuned": "⭕",
20
+ }
21
 
22
  class ModelType(Enum):
23
  PT = ModelInfo(name="pretrained", symbol="🟢")
24
+ FT = ModelInfo(name="fine-tuned", symbol="🔶")
25
+ IFT = ModelInfo(name="instruction-tuned", symbol="")
26
+ RL = ModelInfo(name="RL-tuned", symbol="🟦")
27
+
28
+ def to_str(self, separator = " "):
29
+ return f"{self.value.symbol}{separator}{self.value.name}"
30
 
31
 
32
  TYPE_METADATA: Dict[str, ModelType] = {
33
+ 'notstoic/PygmalionCoT-7b': ModelType.IFT,
34
+ 'aisquared/dlite-v1-355m': ModelType.IFT,
35
+ 'aisquared/dlite-v1-1_5b': ModelType.IFT,
36
+ 'aisquared/dlite-v1-774m': ModelType.IFT,
37
+ 'aisquared/dlite-v1-124m': ModelType.IFT,
38
+ 'aisquared/chopt-2_7b': ModelType.IFT,
39
+ 'aisquared/dlite-v2-124m': ModelType.IFT,
40
+ 'aisquared/dlite-v2-774m': ModelType.IFT,
41
+ 'aisquared/dlite-v2-1_5b': ModelType.IFT,
42
+ 'aisquared/chopt-1_3b': ModelType.IFT,
43
+ 'aisquared/dlite-v2-355m': ModelType.IFT,
44
+ 'augtoma/qCammel-13': ModelType.IFT,
45
+ 'Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload': ModelType.IFT,
46
+ 'Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload': ModelType.IFT,
47
+ 'TheBloke/alpaca-lora-65B-HF': ModelType.FT,
48
+ 'TheBloke/tulu-7B-fp16': ModelType.IFT,
49
+ 'TheBloke/guanaco-7B-HF': ModelType.FT,
50
+ 'TheBloke/koala-7B-HF': ModelType.FT,
51
+ 'TheBloke/wizardLM-7B-HF': ModelType.IFT,
52
+ 'TheBloke/airoboros-13B-HF': ModelType.IFT,
53
+ 'TheBloke/koala-13B-HF': ModelType.FT,
54
+ 'TheBloke/Wizard-Vicuna-7B-Uncensored-HF': ModelType.FT,
55
+ 'TheBloke/dromedary-65b-lora-HF': ModelType.IFT,
56
+ 'TheBloke/wizardLM-13B-1.0-fp16': ModelType.IFT,
57
+ 'TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16': ModelType.FT,
58
+ 'TheBloke/Wizard-Vicuna-30B-Uncensored-fp16': ModelType.FT,
59
+ 'TheBloke/wizard-vicuna-13B-HF': ModelType.IFT,
60
+ 'TheBloke/UltraLM-13B-fp16': ModelType.IFT,
61
+ 'TheBloke/OpenAssistant-FT-7-Llama-30B-HF': ModelType.FT,
62
+ 'TheBloke/vicuna-13B-1.1-HF': ModelType.IFT,
63
+ 'TheBloke/guanaco-13B-HF': ModelType.FT,
64
+ 'TheBloke/guanaco-65B-HF': ModelType.FT,
65
+ 'TheBloke/airoboros-7b-gpt4-fp16': ModelType.IFT,
66
+ 'TheBloke/llama-30b-supercot-SuperHOT-8K-fp16': ModelType.IFT,
67
+ 'TheBloke/Llama-2-13B-fp16': ModelType.PT,
68
+ 'TheBloke/llama-2-70b-Guanaco-QLoRA-fp16': ModelType.FT,
69
+ 'TheBloke/landmark-attention-llama7b-fp16': ModelType.IFT,
70
+ 'TheBloke/Planner-7B-fp16': ModelType.IFT,
71
+ 'TheBloke/Wizard-Vicuna-13B-Uncensored-HF': ModelType.FT,
72
+ 'TheBloke/gpt4-alpaca-lora-13B-HF': ModelType.IFT,
73
+ 'TheBloke/gpt4-x-vicuna-13B-HF': ModelType.IFT,
74
+ 'TheBloke/gpt4-alpaca-lora_mlp-65B-HF': ModelType.IFT,
75
+ 'TheBloke/tulu-13B-fp16': ModelType.IFT,
76
+ 'TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16': ModelType.IFT,
77
+ 'TheBloke/Llama-2-70B-fp16': ModelType.IFT,
78
+ 'TheBloke/WizardLM-30B-fp16': ModelType.IFT,
79
+ 'TheBloke/robin-13B-v2-fp16': ModelType.FT,
80
+ 'TheBloke/robin-33B-v2-fp16': ModelType.FT,
81
+ 'TheBloke/Vicuna-13B-CoT-fp16': ModelType.IFT,
82
+ 'TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16': ModelType.IFT,
83
+ 'TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16': ModelType.FT,
84
+ 'TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16': ModelType.IFT,
85
+ 'TheBloke/GPlatty-30B-SuperHOT-8K-fp16': ModelType.FT,
86
+ 'TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16': ModelType.IFT,
87
+ 'TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16': ModelType.IFT,
88
+ 'jphme/orca_mini_v2_ger_7b': ModelType.IFT,
89
+ 'Ejafa/vicuna_7B_vanilla_1.1': ModelType.FT,
90
+ 'kevinpro/Vicuna-13B-CoT': ModelType.IFT,
91
+ 'AlekseyKorshuk/pygmalion-6b-vicuna-chatml': ModelType.FT,
92
+ 'AlekseyKorshuk/chatml-pyg-v1': ModelType.FT,
93
+ 'concedo/Vicuzard-30B-Uncensored': ModelType.FT,
94
+ 'concedo/OPT-19M-ChatSalad': ModelType.FT,
95
+ 'concedo/Pythia-70M-ChatSalad': ModelType.FT,
96
+ 'digitous/13B-HyperMantis': ModelType.IFT,
97
+ 'digitous/Adventien-GPTJ': ModelType.FT,
98
+ 'digitous/Alpacino13b': ModelType.IFT,
99
+ 'digitous/GPT-R': ModelType.IFT,
100
+ 'digitous/Javelin-R': ModelType.IFT,
101
+ 'digitous/Javalion-GPTJ': ModelType.IFT,
102
+ 'digitous/Javalion-R': ModelType.IFT,
103
+ 'digitous/Skegma-GPTJ': ModelType.FT,
104
+ 'digitous/Alpacino30b': ModelType.IFT,
105
+ 'digitous/Janin-GPTJ': ModelType.FT,
106
+ 'digitous/Janin-R': ModelType.FT,
107
+ 'digitous/Javelin-GPTJ': ModelType.FT,
108
+ 'SaylorTwift/gpt2_test': ModelType.PT,
109
+ 'anton-l/gpt-j-tiny-random': ModelType.FT,
110
+ 'Andron00e/YetAnother_Open-Llama-3B-LoRA-OpenOrca': ModelType.FT,
111
+ 'Lazycuber/pyg-instruct-wizardlm': ModelType.FT,
112
+ 'Lazycuber/Janemalion-6B': ModelType.FT,
113
+ 'IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1': ModelType.FT,
114
+ 'IDEA-CCNL/Ziya-LLaMA-13B-v1': ModelType.IFT,
115
+ 'dsvv-cair/alpaca-cleaned-llama-30b-bf16': ModelType.FT,
116
+ 'gpt2-medium': ModelType.PT,
117
+ 'camel-ai/CAMEL-13B-Combined-Data': ModelType.IFT,
118
+ 'camel-ai/CAMEL-13B-Role-Playing-Data': ModelType.FT,
119
+ 'camel-ai/CAMEL-33B-Combined-Data': ModelType.IFT,
120
+ 'PygmalionAI/pygmalion-6b': ModelType.FT,
121
+ 'PygmalionAI/metharme-1.3b': ModelType.IFT,
122
+ 'PygmalionAI/pygmalion-1.3b': ModelType.FT,
123
+ 'PygmalionAI/pygmalion-350m': ModelType.FT,
124
+ 'PygmalionAI/pygmalion-2.7b': ModelType.FT,
125
+ 'medalpaca/medalpaca-7b': ModelType.FT,
126
+ 'lilloukas/Platypus-30B': ModelType.IFT,
127
+ 'lilloukas/GPlatty-30B': ModelType.FT,
128
+ 'mncai/chatdoctor': ModelType.FT,
129
+ 'chaoyi-wu/MedLLaMA_13B': ModelType.FT,
130
+ 'LoupGarou/WizardCoder-Guanaco-15B-V1.0': ModelType.IFT,
131
+ 'LoupGarou/WizardCoder-Guanaco-15B-V1.1': ModelType.FT,
132
+ 'hakurei/instruct-12b': ModelType.IFT,
133
+ 'hakurei/lotus-12B': ModelType.FT,
134
+ 'shibing624/chinese-llama-plus-13b-hf': ModelType.IFT,
135
+ 'shibing624/chinese-alpaca-plus-7b-hf': ModelType.IFT,
136
+ 'shibing624/chinese-alpaca-plus-13b-hf': ModelType.IFT,
137
+ 'mosaicml/mpt-7b-instruct': ModelType.IFT,
138
+ 'mosaicml/mpt-30b-chat': ModelType.IFT,
139
+ 'mosaicml/mpt-7b-storywriter': ModelType.FT,
140
+ 'mosaicml/mpt-30b-instruct': ModelType.IFT,
141
+ 'mosaicml/mpt-7b-chat': ModelType.IFT,
142
+ 'mosaicml/mpt-30b': ModelType.PT,
143
+ 'Corianas/111m': ModelType.IFT,
144
+ 'Corianas/Quokka_1.3b': ModelType.IFT,
145
+ 'Corianas/256_5epoch': ModelType.FT,
146
+ 'Corianas/Quokka_256m': ModelType.IFT,
147
+ 'Corianas/Quokka_590m': ModelType.IFT,
148
+ 'Corianas/gpt-j-6B-Dolly': ModelType.FT,
149
+ 'Corianas/Quokka_2.7b': ModelType.IFT,
150
+ 'cyberagent/open-calm-7b': ModelType.FT,
151
+ 'Aspik101/Nous-Hermes-13b-pl-lora_unload': ModelType.IFT,
152
+ 'THUDM/chatglm2-6b': ModelType.IFT,
153
+ 'MetaIX/GPT4-X-Alpasta-30b': ModelType.IFT,
154
+ 'NYTK/PULI-GPTrio': ModelType.PT,
155
+ 'EleutherAI/pythia-1.3b': ModelType.PT,
156
+ 'EleutherAI/pythia-2.8b-deduped': ModelType.PT,
157
+ 'EleutherAI/gpt-neo-125m': ModelType.PT,
158
+ 'EleutherAI/pythia-160m': ModelType.PT,
159
+ 'EleutherAI/gpt-neo-2.7B': ModelType.PT,
160
+ 'EleutherAI/pythia-1b-deduped': ModelType.PT,
161
+ 'EleutherAI/pythia-6.7b': ModelType.PT,
162
+ 'EleutherAI/pythia-70m-deduped': ModelType.PT,
163
+ 'EleutherAI/gpt-neox-20b': ModelType.PT,
164
+ 'EleutherAI/pythia-1.4b-deduped': ModelType.PT,
165
+ 'EleutherAI/pythia-2.7b': ModelType.PT,
166
+ 'EleutherAI/pythia-6.9b-deduped': ModelType.PT,
167
+ 'EleutherAI/pythia-70m': ModelType.PT,
168
+ 'EleutherAI/gpt-j-6b': ModelType.PT,
169
+ 'EleutherAI/pythia-12b-deduped': ModelType.PT,
170
+ 'EleutherAI/gpt-neo-1.3B': ModelType.PT,
171
+ 'EleutherAI/pythia-410m-deduped': ModelType.PT,
172
+ 'EleutherAI/pythia-160m-deduped': ModelType.PT,
173
+ 'EleutherAI/polyglot-ko-12.8b': ModelType.PT,
174
+ 'EleutherAI/pythia-12b': ModelType.PT,
175
+ 'roneneldan/TinyStories-33M': ModelType.PT,
176
+ 'roneneldan/TinyStories-28M': ModelType.PT,
177
+ 'roneneldan/TinyStories-1M': ModelType.PT,
178
+ 'roneneldan/TinyStories-8M': ModelType.PT,
179
+ 'roneneldan/TinyStories-3M': ModelType.PT,
180
+ 'jerryjalapeno/nart-100k-7b': ModelType.FT,
181
+ 'lmsys/vicuna-13b-v1.3': ModelType.IFT,
182
+ 'lmsys/vicuna-7b-v1.3': ModelType.IFT,
183
+ 'lmsys/vicuna-13b-v1.1': ModelType.IFT,
184
+ 'lmsys/vicuna-13b-delta-v1.1': ModelType.IFT,
185
+ 'lmsys/vicuna-7b-delta-v1.1': ModelType.IFT,
186
+ 'abhiramtirumala/DialoGPT-sarcastic-medium': ModelType.FT,
187
+ 'haonan-li/bactrian-x-llama-13b-merged': ModelType.IFT,
188
+ 'Gryphe/MythoLogic-13b': ModelType.IFT,
189
+ 'Gryphe/MythoBoros-13b': ModelType.IFT,
190
+ 'pillowtalks-ai/delta13b': ModelType.FT,
191
+ 'wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard': ModelType.FT,
192
+ 'bigscience/bloom-7b1': ModelType.PT,
193
+ 'bigcode/tiny_starcoder_py': ModelType.PT,
194
+ 'bigcode/starcoderplus': ModelType.FT,
195
+ 'bigcode/gpt_bigcode-santacoder': ModelType.PT,
196
+ 'bigcode/starcoder': ModelType.PT,
197
+ 'Open-Orca/OpenOrca-Preview1-13B': ModelType.IFT,
198
+ 'microsoft/DialoGPT-large': ModelType.FT,
199
+ 'microsoft/DialoGPT-small': ModelType.FT,
200
+ 'microsoft/DialoGPT-medium': ModelType.FT,
201
+ 'microsoft/CodeGPT-small-py': ModelType.FT,
202
+ 'Tincando/fiction_story_generator': ModelType.FT,
203
+ 'Pirr/pythia-13b-deduped-green_devil': ModelType.FT,
204
+ 'Aeala/GPT4-x-AlpacaDente2-30b': ModelType.FT,
205
+ 'Aeala/GPT4-x-AlpacaDente-30b': ModelType.FT,
206
+ 'Aeala/GPT4-x-Alpasta-13b': ModelType.FT,
207
+ 'Aeala/VicUnlocked-alpaca-30b': ModelType.IFT,
208
+ 'Tap-M/Luna-AI-Llama2-Uncensored': ModelType.FT,
209
+ 'illuin/test-custom-llama': ModelType.FT,
210
+ 'dvruette/oasst-llama-13b-2-epochs': ModelType.FT,
211
+ 'dvruette/oasst-gpt-neox-20b-1000-steps': ModelType.FT,
212
+ 'dvruette/llama-13b-pretrained-dropout': ModelType.PT,
213
+ 'dvruette/llama-13b-pretrained': ModelType.PT,
214
+ 'dvruette/llama-13b-pretrained-sft-epoch-1': ModelType.PT,
215
+ 'dvruette/llama-13b-pretrained-sft-do2': ModelType.PT,
216
+ 'dvruette/oasst-gpt-neox-20b-3000-steps': ModelType.FT,
217
+ 'dvruette/oasst-pythia-12b-pretrained-sft': ModelType.PT,
218
+ 'dvruette/oasst-pythia-6.9b-4000-steps': ModelType.FT,
219
+ 'dvruette/gpt-neox-20b-full-precision': ModelType.FT,
220
+ 'dvruette/oasst-llama-13b-1000-steps': ModelType.FT,
221
+ 'openlm-research/open_llama_7b_700bt_preview': ModelType.PT,
222
+ 'openlm-research/open_llama_7b': ModelType.PT,
223
+ 'openlm-research/open_llama_7b_v2': ModelType.PT,
224
+ 'openlm-research/open_llama_3b': ModelType.PT,
225
+ 'openlm-research/open_llama_13b': ModelType.PT,
226
+ 'openlm-research/open_llama_3b_v2': ModelType.PT,
227
+ 'PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged': ModelType.IFT,
228
+ 'GeorgiaTechResearchInstitute/galpaca-30b': ModelType.IFT,
229
+ 'GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct': ModelType.IFT,
230
+ 'databricks/dolly-v2-7b': ModelType.IFT,
231
+ 'databricks/dolly-v2-3b': ModelType.IFT,
232
+ 'databricks/dolly-v2-12b': ModelType.IFT,
233
+ 'Rachneet/gpt2-xl-alpaca': ModelType.FT,
234
+ 'Locutusque/gpt2-conversational-or-qa': ModelType.FT,
235
+ 'psyche/kogpt': ModelType.FT,
236
+ 'NbAiLab/nb-gpt-j-6B-alpaca': ModelType.IFT,
237
+ 'Mikael110/llama-2-7b-guanaco-fp16': ModelType.FT,
238
+ 'Mikael110/llama-2-13b-guanaco-fp16': ModelType.FT,
239
+ 'Fredithefish/CrimsonPajama': ModelType.IFT,
240
+ 'Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K': ModelType.FT,
241
+ 'Fredithefish/ScarletPajama-3B-HF': ModelType.FT,
242
+ 'Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4': ModelType.IFT,
243
+ 'acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1': ModelType.IFT,
244
+ 'eachadea/vicuna-13b-1.1': ModelType.FT,
245
+ 'eachadea/vicuna-7b-1.1': ModelType.FT,
246
+ 'eachadea/vicuna-13b': ModelType.FT,
247
+ 'openaccess-ai-collective/wizard-mega-13b': ModelType.IFT,
248
+ 'openaccess-ai-collective/manticore-13b': ModelType.IFT,
249
+ 'openaccess-ai-collective/manticore-30b-chat-pyg-alpha': ModelType.IFT,
250
+ 'openaccess-ai-collective/minotaur-13b': ModelType.IFT,
251
+ 'openaccess-ai-collective/minotaur-13b-fixed': ModelType.IFT,
252
+ 'openaccess-ai-collective/hippogriff-30b-chat': ModelType.IFT,
253
+ 'openaccess-ai-collective/manticore-13b-chat-pyg': ModelType.IFT,
254
+ 'pythainlp/wangchanglm-7.5B-sft-enth': ModelType.IFT,
255
+ 'pythainlp/wangchanglm-7.5B-sft-en-sharded': ModelType.IFT,
256
+ 'euclaise/gpt-neox-122m-minipile-digits': ModelType.FT,
257
+ 'stabilityai/StableBeluga1-Delta': ModelType.IFT,
258
+ 'stabilityai/stablelm-tuned-alpha-7b': ModelType.IFT,
259
+ 'stabilityai/StableBeluga2': ModelType.IFT,
260
+ 'stabilityai/StableBeluga-13B': ModelType.IFT,
261
+ 'stabilityai/StableBeluga-7B': ModelType.IFT,
262
+ 'stabilityai/stablelm-base-alpha-7b': ModelType.PT,
263
+ 'stabilityai/stablelm-base-alpha-3b': ModelType.PT,
264
+ 'stabilityai/stablelm-tuned-alpha-3b': ModelType.IFT,
265
+ 'alibidaran/medical_transcription_generator': ModelType.FT,
266
+ 'CalderaAI/30B-Lazarus': ModelType.IFT,
267
+ 'CalderaAI/13B-BlueMethod': ModelType.IFT,
268
+ 'CalderaAI/13B-Ouroboros': ModelType.IFT,
269
+ 'KoboldAI/OPT-13B-Erebus': ModelType.FT,
270
+ 'KoboldAI/GPT-J-6B-Janeway': ModelType.FT,
271
+ 'KoboldAI/GPT-J-6B-Shinen': ModelType.FT,
272
+ 'KoboldAI/fairseq-dense-2.7B': ModelType.PT,
273
+ 'KoboldAI/OPT-6B-nerys-v2': ModelType.FT,
274
+ 'KoboldAI/GPT-NeoX-20B-Skein': ModelType.FT,
275
+ 'KoboldAI/PPO_Pygway-6b-Mix': ModelType.FT,
276
+ 'KoboldAI/fairseq-dense-6.7B': ModelType.PT,
277
+ 'KoboldAI/fairseq-dense-125M': ModelType.PT,
278
+ 'KoboldAI/OPT-13B-Nerybus-Mix': ModelType.FT,
279
+ 'KoboldAI/OPT-2.7B-Erebus': ModelType.FT,
280
+ 'KoboldAI/OPT-350M-Nerys-v2': ModelType.FT,
281
+ 'KoboldAI/OPT-2.7B-Nerys-v2': ModelType.FT,
282
+ 'KoboldAI/OPT-2.7B-Nerybus-Mix': ModelType.FT,
283
+ 'KoboldAI/OPT-13B-Nerys-v2': ModelType.FT,
284
+ 'KoboldAI/GPT-NeoX-20B-Erebus': ModelType.FT,
285
+ 'KoboldAI/OPT-6.7B-Erebus': ModelType.FT,
286
+ 'KoboldAI/fairseq-dense-355M': ModelType.PT,
287
+ 'KoboldAI/OPT-6.7B-Nerybus-Mix': ModelType.FT,
288
+ 'KoboldAI/GPT-J-6B-Adventure': ModelType.FT,
289
+ 'KoboldAI/OPT-350M-Erebus': ModelType.FT,
290
+ 'KoboldAI/GPT-J-6B-Skein': ModelType.FT,
291
+ 'KoboldAI/OPT-30B-Erebus': ModelType.FT,
292
+ 'klosax/pythia-160m-deduped-step92k-193bt': ModelType.PT,
293
+ 'klosax/open_llama_3b_350bt_preview': ModelType.PT,
294
+ 'klosax/openllama-3b-350bt': ModelType.PT,
295
+ 'klosax/pythia-70m-deduped-step44k-92bt': ModelType.PT,
296
+ 'klosax/open_llama_13b_600bt_preview': ModelType.PT,
297
+ 'klosax/open_llama_7b_400bt_preview': ModelType.PT,
298
+ 'kfkas/Llama-2-ko-7b-Chat': ModelType.IFT,
299
+ 'WeOpenML/Alpaca-7B-v1': ModelType.IFT,
300
+ 'WeOpenML/PandaLM-Alpaca-7B-v1': ModelType.IFT,
301
+ 'TFLai/gpt2-turkish-uncased': ModelType.FT,
302
+ 'ehartford/WizardLM-13B-Uncensored': ModelType.IFT,
303
+ 'ehartford/dolphin-llama-13b': ModelType.IFT,
304
+ 'ehartford/Wizard-Vicuna-30B-Uncensored': ModelType.FT,
305
+ 'ehartford/WizardLM-30B-Uncensored': ModelType.IFT,
306
+ 'ehartford/Wizard-Vicuna-13B-Uncensored': ModelType.FT,
307
+ 'ehartford/WizardLM-7B-Uncensored': ModelType.IFT,
308
+ 'ehartford/based-30b': ModelType.FT,
309
+ 'ehartford/Wizard-Vicuna-7B-Uncensored': ModelType.FT,
310
+ 'wahaha1987/llama_7b_sharegpt94k_fastchat': ModelType.FT,
311
+ 'wahaha1987/llama_13b_sharegpt94k_fastchat': ModelType.FT,
312
+ 'OpenAssistant/oasst-sft-1-pythia-12b': ModelType.FT,
313
+ 'OpenAssistant/stablelm-7b-sft-v7-epoch-3': ModelType.IFT,
314
+ 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5': ModelType.FT,
315
+ 'OpenAssistant/pythia-12b-sft-v8-2.5k-steps': ModelType.IFT,
316
+ 'OpenAssistant/pythia-12b-sft-v8-7k-steps': ModelType.IFT,
317
+ 'OpenAssistant/pythia-12b-pre-v8-12.5k-steps': ModelType.IFT,
318
+ 'OpenAssistant/llama2-13b-orca-8k-3319': ModelType.IFT,
319
+ 'junelee/wizard-vicuna-13b': ModelType.FT,
320
+ 'BreadAi/gpt-YA-1-1_160M': ModelType.PT,
321
+ 'BreadAi/MuseCan': ModelType.PT,
322
+ 'BreadAi/MusePy-1-2': ModelType.PT,
323
+ 'BreadAi/DiscordPy': ModelType.PT,
324
+ 'BreadAi/PM_modelV2': ModelType.PT,
325
+ 'BreadAi/gpt-Youtube': ModelType.PT,
326
+ 'BreadAi/StoryPy': ModelType.FT,
327
+ 'julianweng/Llama-2-7b-chat-orcah': ModelType.FT,
328
+ 'AGI-inc/lora_moe_7b_baseline': ModelType.FT,
329
+ 'AGI-inc/lora_moe_7b': ModelType.FT,
330
+ 'togethercomputer/GPT-NeoXT-Chat-Base-20B': ModelType.IFT,
331
+ 'togethercomputer/RedPajama-INCITE-Chat-7B-v0.1': ModelType.IFT,
332
+ 'togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1': ModelType.IFT,
333
+ 'togethercomputer/RedPajama-INCITE-7B-Base': ModelType.PT,
334
+ 'togethercomputer/RedPajama-INCITE-7B-Instruct': ModelType.IFT,
335
+ 'togethercomputer/RedPajama-INCITE-Base-3B-v1': ModelType.PT,
336
+ 'togethercomputer/Pythia-Chat-Base-7B': ModelType.IFT,
337
+ 'togethercomputer/RedPajama-INCITE-Base-7B-v0.1': ModelType.PT,
338
+ 'togethercomputer/GPT-JT-6B-v1': ModelType.IFT,
339
+ 'togethercomputer/GPT-JT-6B-v0': ModelType.IFT,
340
+ 'togethercomputer/RedPajama-INCITE-Chat-3B-v1': ModelType.IFT,
341
+ 'togethercomputer/RedPajama-INCITE-7B-Chat': ModelType.IFT,
342
+ 'togethercomputer/RedPajama-INCITE-Instruct-3B-v1': ModelType.IFT,
343
+ 'Writer/camel-5b-hf': ModelType.IFT,
344
+ 'Writer/palmyra-base': ModelType.PT,
345
+ 'MBZUAI/LaMini-GPT-1.5B': ModelType.IFT,
346
+ 'MBZUAI/lamini-cerebras-111m': ModelType.IFT,
347
+ 'MBZUAI/lamini-neo-1.3b': ModelType.IFT,
348
+ 'MBZUAI/lamini-cerebras-1.3b': ModelType.IFT,
349
+ 'MBZUAI/lamini-cerebras-256m': ModelType.IFT,
350
+ 'MBZUAI/LaMini-GPT-124M': ModelType.IFT,
351
+ 'MBZUAI/lamini-neo-125m': ModelType.IFT,
352
+ 'TehVenom/DiffMerge-DollyGPT-Pygmalion': ModelType.FT,
353
+ 'TehVenom/PPO_Shygmalion-6b': ModelType.FT,
354
+ 'TehVenom/Dolly_Shygmalion-6b-Dev_V8P2': ModelType.FT,
355
+ 'TehVenom/Pygmalion_AlpacaLora-7b': ModelType.FT,
356
+ 'TehVenom/PPO_Pygway-V8p4_Dev-6b': ModelType.FT,
357
+ 'TehVenom/Dolly_Malion-6b': ModelType.FT,
358
+ 'TehVenom/PPO_Shygmalion-V8p4_Dev-6b': ModelType.FT,
359
+ 'TehVenom/ChanMalion': ModelType.FT,
360
+ 'TehVenom/GPT-J-Pyg_PPO-6B': ModelType.IFT,
361
+ 'TehVenom/Pygmalion-13b-Merged': ModelType.FT,
362
+ 'TehVenom/Metharme-13b-Merged': ModelType.IFT,
363
+ 'TehVenom/Dolly_Shygmalion-6b': ModelType.FT,
364
+ 'TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4': ModelType.IFT,
365
+ 'georgesung/llama2_7b_chat_uncensored': ModelType.FT,
366
+ 'vicgalle/gpt2-alpaca': ModelType.IFT,
367
+ 'vicgalle/alpaca-7b': ModelType.FT,
368
+ 'vicgalle/gpt2-alpaca-gpt4': ModelType.IFT,
369
+ 'facebook/opt-350m': ModelType.PT,
370
+ 'facebook/opt-125m': ModelType.PT,
371
+ 'facebook/xglm-4.5B': ModelType.PT,
372
+ 'facebook/opt-2.7b': ModelType.PT,
373
+ 'facebook/opt-6.7b': ModelType.PT,
374
+ 'facebook/galactica-30b': ModelType.PT,
375
+ 'facebook/opt-13b': ModelType.PT,
376
+ 'facebook/opt-66b': ModelType.PT,
377
+ 'facebook/xglm-7.5B': ModelType.PT,
378
+ 'facebook/xglm-564M': ModelType.PT,
379
+ 'facebook/opt-30b': ModelType.PT,
380
+ 'golaxy/gogpt-7b': ModelType.FT,
381
+ 'golaxy/gogpt2-7b': ModelType.FT,
382
+ 'golaxy/gogpt-7b-bloom': ModelType.FT,
383
+ 'golaxy/gogpt-3b-bloom': ModelType.FT,
384
+ 'psmathur/orca_mini_v2_7b': ModelType.IFT,
385
+ 'psmathur/orca_mini_7b': ModelType.IFT,
386
+ 'psmathur/orca_mini_3b': ModelType.IFT,
387
+ 'psmathur/orca_mini_v2_13b': ModelType.IFT,
388
+ 'gpt2-xl': ModelType.PT,
389
+ 'lxe/Cerebras-GPT-2.7B-Alpaca-SP': ModelType.FT,
390
+ 'Monero/Manticore-13b-Chat-Pyg-Guanaco': ModelType.FT,
391
+ 'Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b': ModelType.IFT,
392
+ 'Monero/WizardLM-13b-OpenAssistant-Uncensored': ModelType.IFT,
393
+ 'Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b': ModelType.IFT,
394
+ 'jzjiao/opt-1.3b-rlhf': ModelType.FT,
395
+ 'HuggingFaceH4/starchat-beta': ModelType.IFT,
396
+ 'KnutJaegersberg/gpt-2-xl-EvolInstruct': ModelType.IFT,
397
+ 'KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct': ModelType.IFT,
398
+ 'KnutJaegersberg/galactica-orca-wizardlm-1.3b': ModelType.IFT,
399
+ 'openchat/openchat_8192': ModelType.IFT,
400
+ 'openchat/openchat_v2': ModelType.IFT,
401
+ 'openchat/openchat_v2_w': ModelType.IFT,
402
+ 'ausboss/llama-13b-supercot': ModelType.IFT,
403
+ 'ausboss/llama-30b-supercot': ModelType.IFT,
404
+ 'Neko-Institute-of-Science/metharme-7b': ModelType.IFT,
405
+ 'Neko-Institute-of-Science/pygmalion-7b': ModelType.FT,
406
+ 'SebastianSchramm/Cerebras-GPT-111M-instruction': ModelType.IFT,
407
+ 'victor123/WizardLM-13B-1.0': ModelType.IFT,
408
+ 'OpenBuddy/openbuddy-openllama-13b-v7-fp16': ModelType.FT,
409
+ 'OpenBuddy/openbuddy-llama2-13b-v8.1-fp16': ModelType.FT,
410
+ 'OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16': ModelType.FT,
411
+ 'baichuan-inc/Baichuan-7B': ModelType.PT,
412
+ 'tiiuae/falcon-40b-instruct': ModelType.IFT,
413
+ 'tiiuae/falcon-40b': ModelType.PT,
414
+ 'tiiuae/falcon-7b': ModelType.PT,
415
+ 'YeungNLP/firefly-llama-13b': ModelType.FT,
416
+ 'YeungNLP/firefly-llama-13b-v1.2': ModelType.FT,
417
+ 'YeungNLP/firefly-llama2-13b': ModelType.FT,
418
+ 'YeungNLP/firefly-ziya-13b': ModelType.FT,
419
+ 'shaohang/Sparse0.5_OPT-1.3': ModelType.FT,
420
+ 'xzuyn/Alpacino-SuperCOT-13B': ModelType.IFT,
421
+ 'xzuyn/MedicWizard-7B': ModelType.FT,
422
+ 'xDAN-AI/xDAN_13b_l2_lora': ModelType.FT,
423
+ 'beomi/KoAlpaca-Polyglot-5.8B': ModelType.FT,
424
+ 'beomi/llama-2-ko-7b': ModelType.IFT,
425
+ 'Salesforce/codegen-6B-multi': ModelType.PT,
426
+ 'Salesforce/codegen-16B-nl': ModelType.PT,
427
+ 'Salesforce/codegen-6B-nl': ModelType.PT,
428
+ 'ai-forever/rugpt3large_based_on_gpt2': ModelType.FT,
429
+ 'gpt2-large': ModelType.PT,
430
+ 'frank098/orca_mini_3b_juniper': ModelType.FT,
431
+ 'frank098/WizardLM_13B_juniper': ModelType.FT,
432
+ 'FPHam/Free_Sydney_13b_HF': ModelType.FT,
433
+ 'huggingface/llama-13b': ModelType.PT,
434
+ 'huggingface/llama-7b': ModelType.PT,
435
+ 'huggingface/llama-65b': ModelType.PT,
436
+ 'huggingface/llama-30b': ModelType.PT,
437
+ 'Henk717/chronoboros-33B': ModelType.IFT,
438
+ 'jondurbin/airoboros-13b-gpt4-1.4': ModelType.IFT,
439
+ 'jondurbin/airoboros-7b': ModelType.IFT,
440
+ 'jondurbin/airoboros-7b-gpt4': ModelType.IFT,
441
+ 'jondurbin/airoboros-7b-gpt4-1.1': ModelType.IFT,
442
+ 'jondurbin/airoboros-7b-gpt4-1.2': ModelType.IFT,
443
+ 'jondurbin/airoboros-7b-gpt4-1.3': ModelType.IFT,
444
+ 'jondurbin/airoboros-7b-gpt4-1.4': ModelType.IFT,
445
+ 'jondurbin/airoboros-l2-7b-gpt4-1.4.1': ModelType.IFT,
446
+ 'jondurbin/airoboros-l2-13b-gpt4-1.4.1': ModelType.IFT,
447
+ 'jondurbin/airoboros-l2-70b-gpt4-1.4.1': ModelType.IFT,
448
+ 'jondurbin/airoboros-13b': ModelType.IFT,
449
+ 'jondurbin/airoboros-33b-gpt4-1.4': ModelType.IFT,
450
+ 'jondurbin/airoboros-33b-gpt4-1.2': ModelType.IFT,
451
+ 'jondurbin/airoboros-65b-gpt4-1.2': ModelType.IFT,
452
+ 'ariellee/SuperPlatty-30B': ModelType.IFT,
453
+ 'danielhanchen/open_llama_3b_600bt_preview': ModelType.FT,
454
+ 'cerebras/Cerebras-GPT-256M': ModelType.PT,
455
+ 'cerebras/Cerebras-GPT-1.3B': ModelType.PT,
456
+ 'cerebras/Cerebras-GPT-13B': ModelType.PT,
457
+ 'cerebras/Cerebras-GPT-2.7B': ModelType.PT,
458
+ 'cerebras/Cerebras-GPT-111M': ModelType.PT,
459
+ 'cerebras/Cerebras-GPT-6.7B': ModelType.PT,
460
+ 'Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf': ModelType.RL,
461
+ 'Yhyu13/llama-30B-hf-openassitant': ModelType.FT,
462
+ 'NousResearch/Nous-Hermes-Llama2-13b': ModelType.IFT,
463
+ 'NousResearch/Nous-Hermes-llama-2-7b': ModelType.IFT,
464
+ 'NousResearch/Redmond-Puffin-13B': ModelType.IFT,
465
+ 'NousResearch/Nous-Hermes-13b': ModelType.IFT,
466
+ 'project-baize/baize-v2-7b': ModelType.IFT,
467
+ 'project-baize/baize-v2-13b': ModelType.IFT,
468
+ 'LLMs/WizardLM-13B-V1.0': ModelType.FT,
469
+ 'LLMs/AlpacaGPT4-7B-elina': ModelType.FT,
470
+ 'wenge-research/yayi-7b': ModelType.FT,
471
+ 'wenge-research/yayi-7b-llama2': ModelType.FT,
472
+ 'wenge-research/yayi-13b-llama2': ModelType.FT,
473
+ 'yhyhy3/open_llama_7b_v2_med_instruct': ModelType.IFT,
474
+ 'llama-anon/instruct-13b': ModelType.IFT,
475
+ 'huggingtweets/jerma985': ModelType.FT,
476
+ 'huggingtweets/gladosystem': ModelType.FT,
477
+ 'huggingtweets/bladeecity-jerma985': ModelType.FT,
478
+ 'huggyllama/llama-13b': ModelType.PT,
479
+ 'huggyllama/llama-65b': ModelType.PT,
480
+ 'FabbriSimo01/Facebook_opt_1.3b_Quantized': ModelType.PT,
481
+ 'upstage/Llama-2-70b-instruct': ModelType.IFT,
482
+ 'upstage/Llama-2-70b-instruct-1024': ModelType.IFT,
483
+ 'upstage/llama-65b-instruct': ModelType.IFT,
484
+ 'upstage/llama-30b-instruct-2048': ModelType.IFT,
485
+ 'upstage/llama-30b-instruct': ModelType.IFT,
486
+ 'WizardLM/WizardLM-13B-1.0': ModelType.IFT,
487
+ 'WizardLM/WizardLM-13B-V1.1': ModelType.IFT,
488
+ 'WizardLM/WizardLM-13B-V1.2': ModelType.IFT,
489
+ 'WizardLM/WizardLM-30B-V1.0': ModelType.IFT,
490
+ 'WizardLM/WizardCoder-15B-V1.0': ModelType.IFT,
491
+ 'gpt2': ModelType.PT,
492
+ 'keyfan/vicuna-chinese-replication-v1.1': ModelType.IFT,
493
+ 'nthngdy/pythia-owt2-70m-100k': ModelType.FT,
494
+ 'nthngdy/pythia-owt2-70m-50k': ModelType.FT,
495
+ 'quantumaikr/KoreanLM-hf': ModelType.FT,
496
+ 'quantumaikr/open_llama_7b_hf': ModelType.FT,
497
+ 'quantumaikr/QuantumLM-70B-hf': ModelType.IFT,
498
+ 'MayaPH/FinOPT-Lincoln': ModelType.FT,
499
+ 'MayaPH/FinOPT-Franklin': ModelType.FT,
500
+ 'MayaPH/GodziLLa-30B': ModelType.IFT,
501
+ 'MayaPH/GodziLLa-30B-plus': ModelType.IFT,
502
+ 'MayaPH/FinOPT-Washington': ModelType.FT,
503
+ 'ogimgio/gpt-neo-125m-neurallinguisticpioneers': ModelType.FT,
504
+ 'layoric/llama-2-13b-code-alpaca': ModelType.FT,
505
+ 'CobraMamba/mamba-gpt-3b': ModelType.FT,
506
+ 'CobraMamba/mamba-gpt-3b-v2': ModelType.FT,
507
+ 'CobraMamba/mamba-gpt-3b-v3': ModelType.FT,
508
+ 'timdettmers/guanaco-33b-merged': ModelType.FT,
509
+ 'elinas/chronos-33b': ModelType.IFT,
510
+ 'heegyu/RedTulu-Uncensored-3B-0719': ModelType.IFT,
511
+ 'heegyu/WizardVicuna-Uncensored-3B-0719': ModelType.IFT,
512
+ 'heegyu/WizardVicuna-3B-0719': ModelType.IFT,
513
+ 'meta-llama/Llama-2-7b-chat-hf': ModelType.RL,
514
+ 'meta-llama/Llama-2-7b-hf': ModelType.PT,
515
+ 'meta-llama/Llama-2-13b-chat-hf': ModelType.RL,
516
+ 'meta-llama/Llama-2-13b-hf': ModelType.PT,
517
+ 'meta-llama/Llama-2-70b-chat-hf': ModelType.RL,
518
+ 'meta-llama/Llama-2-70b-hf': ModelType.PT,
519
+ 'xhyi/PT_GPTNEO350_ATG': ModelType.FT,
520
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-20b': ModelType.FT,
521
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt': ModelType.FT,
522
+ 'h2oai/h2ogpt-oig-oasst1-512-6_9b': ModelType.IFT,
523
+ 'h2oai/h2ogpt-oasst1-512-12b': ModelType.IFT,
524
+ 'h2oai/h2ogpt-oig-oasst1-256-6_9b': ModelType.IFT,
525
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt': ModelType.FT,
526
+ 'h2oai/h2ogpt-oasst1-512-20b': ModelType.IFT,
527
+ 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2': ModelType.FT,
528
+ 'h2oai/h2ogpt-gm-oasst1-en-1024-12b': ModelType.FT,
529
+ 'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b': ModelType.FT,
530
+ 'bofenghuang/vigogne-13b-instruct': ModelType.IFT,
531
+ 'bofenghuang/vigogne-13b-chat': ModelType.FT,
532
+ 'bofenghuang/vigogne-2-7b-instruct': ModelType.IFT,
533
+ 'bofenghuang/vigogne-7b-instruct': ModelType.IFT,
534
+ 'bofenghuang/vigogne-7b-chat': ModelType.FT,
535
+ 'Vmware/open-llama-7b-v2-open-instruct': ModelType.IFT,
536
+ 'VMware/open-llama-0.7T-7B-open-instruct-v1.1': ModelType.IFT,
537
+ 'ewof/koishi-instruct-3b': ModelType.IFT,
538
+ 'gywy/llama2-13b-chinese-v1': ModelType.FT,
539
+ 'GOAT-AI/GOAT-7B-Community': ModelType.FT,
540
+ 'psyche/kollama2-7b': ModelType.FT,
541
+ 'TheTravellingEngineer/llama2-7b-hf-guanaco': ModelType.FT,
542
+ 'beaugogh/pythia-1.4b-deduped-sharegpt': ModelType.FT,
543
+ 'augtoma/qCammel-70-x': ModelType.IFT,
544
+ 'Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload': ModelType.IFT,
545
+ 'anhnv125/pygmalion-6b-roleplay': ModelType.FT,
546
+ '64bits/LexPodLM-13B': ModelType.FT,
547
  }
548
 
549
 
550
  def get_model_type(leaderboard_data: List[dict]):
551
  for model_data in leaderboard_data:
552
  # Todo @clefourrier once requests are connected with results
 
553
  # Stored information
554
+ request_file = os.path.join("eval-queue", model_data["model_name_for_query"] + "_eval_request_*" + ".json")
555
+ request_file = glob.glob(request_file)
556
+
557
+ if len(request_file) == 0:
558
+ model_data[AutoEvalColumn.model_type.name] = ""
559
+ model_data[AutoEvalColumn.model_type_symbol.name] = ""
560
+ continue
561
+
562
+ request_file = request_file[0]
563
+
564
+ try:
565
+ with open(request_file, "r") as f:
566
+ request = json.load(f)
567
+ is_delta = request["weight_type"] != "Original"
568
+ except Exception:
569
+ is_delta = False
570
+
571
+ try:
572
+ with open(request_file, "r") as f:
573
+ request = json.load(f)
574
+ model_type = request["model_type"]
575
+ model_data[AutoEvalColumn.model_type.name] = model_type
576
+ model_data[AutoEvalColumn.model_type_symbol.name] = model_type_symbols[model_type] + ("🔺" if is_delta else "")
577
+ except Exception:
578
+ model_data[AutoEvalColumn.model_type.name] = "Unknown, add type to request file!"
579
+ model_data[AutoEvalColumn.model_type_symbol.name] = "?"
src/init.py CHANGED
File without changes
src/utils_display.py CHANGED
@@ -22,7 +22,7 @@ class AutoEvalColumn: # Auto evals column
22
  mmlu = ColumnContent("MMLU", "number", True)
23
  truthfulqa = ColumnContent("TruthfulQA", "number", True)
24
  model_type = ColumnContent("Type", "str", False)
25
- precision = ColumnContent("Precision", "str", False, True)
26
  license = ColumnContent("Hub License", "str", False)
27
  params = ColumnContent("#Params (B)", "number", False)
28
  likes = ColumnContent("Hub ❤️", "number", False)
@@ -43,7 +43,7 @@ class EvalQueueColumn: # Queue column
43
  model = ColumnContent("model", "markdown", True)
44
  revision = ColumnContent("revision", "str", True)
45
  private = ColumnContent("private", "bool", True)
46
- precision = ColumnContent("precision", "bool", True)
47
  weight_type = ColumnContent("weight_type", "str", "Original")
48
  status = ColumnContent("status", "str", True)
49
 
 
22
  mmlu = ColumnContent("MMLU", "number", True)
23
  truthfulqa = ColumnContent("TruthfulQA", "number", True)
24
  model_type = ColumnContent("Type", "str", False)
25
+ precision = ColumnContent("Precision", "str", False) #, True)
26
  license = ColumnContent("Hub License", "str", False)
27
  params = ColumnContent("#Params (B)", "number", False)
28
  likes = ColumnContent("Hub ❤️", "number", False)
 
43
  model = ColumnContent("model", "markdown", True)
44
  revision = ColumnContent("revision", "str", True)
45
  private = ColumnContent("private", "bool", True)
46
+ precision = ColumnContent("precision", "str", True)
47
  weight_type = ColumnContent("weight_type", "str", "Original")
48
  status = ColumnContent("status", "str", True)
49