#!/usr/bin/env python """A demo of the VitPose model. This code is based on the implementation from the Colab notebook: https://colab.research.google.com/drive/1e8fcby5rhKZWcr9LSN8mNbQ0TU4Dxxpo """ import pathlib import tempfile import cv2 import gradio as gr import numpy as np import PIL.Image import spaces import supervision as sv import torch import tqdm from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation DESCRIPTION = "# ViTPose" MAX_NUM_FRAMES = 300 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") person_detector_name = "PekingU/rtdetr_r50vd_coco_o365" person_image_processor = AutoProcessor.from_pretrained(person_detector_name) person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device) pose_model_name = "usyd-community/vitpose-base-simple" pose_image_processor = AutoProcessor.from_pretrained(pose_model_name) pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device) @spaces.GPU(duration=5) @torch.inference_mode() def process_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]: inputs = person_image_processor(images=image, return_tensors="pt").to(device) outputs = person_model(**inputs) results = person_image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3 ) result = results[0] # take first image results # Human label refers 0 index in COCO dataset person_boxes_xyxy = result["boxes"][result["labels"] == 0] person_boxes_xyxy = person_boxes_xyxy.cpu().numpy() # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format person_boxes = person_boxes_xyxy.copy() person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0] person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1] inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device) # for vitpose-plus-base checkpoint we should additionaly provide dataset_index # to sepcify which MOE experts to use for inference if pose_model.config.backbone_config.num_experts > 1: dataset_index = torch.tensor([0] * len(inputs["pixel_values"])) dataset_index = dataset_index.to(inputs["pixel_values"].device) inputs["dataset_index"] = dataset_index outputs = pose_model(**inputs) pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes]) image_pose_result = pose_results[0] # results for first image # make results more human-readable human_readable_results = [] for i, person_pose in enumerate(image_pose_result): data = { "person_id": i, "bbox": person_pose["bbox"].numpy().tolist(), "keypoints": [], } for keypoint, label, score in zip( person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True ): keypoint_name = pose_model.config.id2label[label.item()] x, y = keypoint data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()}) human_readable_results.append(data) # preprocess to torch tensor of shape (n_objects, n_keypoints, 2) xy = [pose_result["keypoints"] for pose_result in image_pose_result] xy = torch.stack(xy).cpu().numpy() scores = [pose_result["scores"] for pose_result in image_pose_result] scores = torch.stack(scores).cpu().numpy() keypoints = sv.KeyPoints(xy=xy, confidence=scores) detections = sv.Detections(xyxy=person_boxes_xyxy) edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1) vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2) bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1) annotated_frame = image.copy() # annotate boundg boxes annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections) # annotate edges and verticies annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints) return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results @spaces.GPU(duration=90) def process_video( video_path: str, progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 ) -> str: cap = cv2.VideoCapture(video_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = cap.get(cv2.CAP_PROP_FPS) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file: writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height)) for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))): ok, frame = cap.read() if not ok: break rgb_frame = frame[:, :, ::-1] annotated_frame, _ = process_image(PIL.Image.fromarray(rgb_frame)) writer.write(np.asarray(annotated_frame)[:, :, ::-1]) writer.release() cap.release() return out_file.name with gr.Blocks(css_paths="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.Tab("Image"): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") run_button_image = gr.Button() with gr.Column(): output_image = gr.Image(label="Output Image") output_json = gr.JSON(label="Output JSON") gr.Examples( examples=sorted(pathlib.Path("images").glob("*.jpg")), inputs=input_image, outputs=[output_image, output_json], fn=process_image, ) run_button_image.click( fn=process_image, inputs=input_image, outputs=[output_image, output_json], ) with gr.Tab("Video"): gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.") with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") run_button_video = gr.Button() with gr.Column(): output_video = gr.Video(label="Output Video") gr.Examples( examples=sorted(pathlib.Path("videos").glob("*.mp4")), inputs=input_video, outputs=output_video, fn=process_video, cache_examples=False, ) run_button_video.click( fn=process_video, inputs=input_video, outputs=output_video, ) if __name__ == "__main__": demo.queue(max_size=20).launch()