sketch-to-3d / app.py
linoyts's picture
linoyts HF staff
Update app.py
5ecde43 verified
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image, ImageOps
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import os
import random
import torch
import torchvision.transforms.functional as TF
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers.utils import load_image
from huggingface_hub import HfApi
from pathlib import Path
from PIL import Image, ImageOps
import torch
import numpy as np
import cv2
import os
import random
from gradio_imageslider import ImageSlider
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def reset_canvas():
return gr.update(value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
@spaces.GPU
def preprocess_image(image: Image.Image,
prompt: str = "",
negative_prompt: str = "",
style_name: str = "",
num_steps: int = 25,
guidance_scale: float = 5,
controlnet_conditioning_scale: float = 1.0,
) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
width, height = image['composite'].size
ratio = np.sqrt(1024. * 1024. / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
image = image['composite'].resize((new_width, new_height))
image = ImageOps.invert(image)
print("image:",type(image))
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
output = pipe_control(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_steps,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
width=new_width,
height=new_height).images[0]
processed_image = pipeline.preprocess_image(output)
return (image, processed_image)
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images.
Args:
images (List[Tuple[Image.Image, str]]): The input images.
Returns:
List[Image.Image]: The preprocessed images.
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
multiimages: List[Tuple[Image.Image, str]],
is_multiimage: bool,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if not is_multiimage:
outputs = pipeline.run(
image[1],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
else:
outputs = pipeline.run_multi_image(
[image[0] for image in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
def reset_do_preprocess():
return True
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def prepare_multi_example() -> List[Image.Image]:
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
images = []
for case in multi_case:
_images = []
for i in range(1, 4):
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
W, H = img.size
img = img.resize((int(W / H * 512), 512))
_images.append(np.array(img))
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
return images
def split_image(image: Image.Image) -> List[Image.Image]:
"""
Split an image into multiple views.
"""
image = np.array(image)
alpha = image[..., 3]
alpha = np.any(alpha>0, axis=0)
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
images = []
for s, e in zip(start_pos, end_pos):
images.append(Image.fromarray(image[:, s:e+1]))
return [preprocess_image(image) for image in images]
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Sketch to 3D with TRELLIS
1. Fast sketch to image with SDXL Flash, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash)
2. Scalable and versatile image to 3D generation using [TRELLIS](https://trellis3d.github.io/)
### 🎨🖌️ draw or upload a sketch and click "Generate" to create a 3D asset ✨
""")
with gr.Row():
with gr.Column():
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
with gr.Column():
image_prompt = gr.ImageMask(label="Input sketch", type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
with gr.Row():
sketch_btn = gr.Button("process sketch")
generate_btn = gr.Button("Generate 3D")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
with gr.Accordion(label="Generation Settings", open=False):
with gr.Tab(label="sketch-to-image generation"):
negative_prompt = gr.Textbox(label="Negative prompt")
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=20,
step=1,
value=8,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
controlnet_conditioning_scale = gr.Slider(
label="controlnet conditioning scale",
minimum=0.5,
maximum=5.0,
step=0.01,
value=0.85,
)
with gr.Tab(label="3D generation"):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
with gr.Tab(label="Multiple Images", id=1, visible=False) as multiimage_input_tab:
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
gr.Markdown("""
Input different views of the object in separate images.
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
""")
#generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
image_prompt_processed = ImageSlider(label="processed sketch", interactive=False, type="pil", height=512)
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
is_multiimage = gr.State(False)
do_preprocess = gr.State(True)
output_buf = gr.State()
#Example images at the bottom of the page
with gr.Row(visible=False) as single_image_example:
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt_processed],
run_on_click=True,
examples_per_page=64,
)
with gr.Row(visible=False) as multiimage_example:
examples_multi = gr.Examples(
examples=prepare_multi_example(),
inputs=[image_prompt],
fn=split_image,
outputs=[multiimage_prompt],
run_on_click=True,
examples_per_page=8,
)
# Handlers
demo.load(start_session)
demo.unload(end_session)
# single_image_input_tab.select(
# lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
# outputs=[is_multiimage, single_image_example, multiimage_example]
# )
multiimage_input_tab.select(
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
outputs=[is_multiimage, single_image_example, multiimage_example]
)
image_prompt.clear(
fn=reset_canvas,
outputs = [image_prompt]
)
# image_prompt.upload(
# preprocess_image,
# inputs=[image_prompt, prompt, negative_prompt, style, do_preprocess],
# outputs=[image_prompt, do_preprocess],
# )
sketch_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
preprocess_image,
inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
outputs=[image_prompt_processed],
)
multiimage_prompt.upload(
preprocess_images,
inputs=[multiimage_prompt],
outputs=[multiimage_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[image_prompt_processed, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
outputs=[output_buf, video_output],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
device = "cuda" if torch.cuda.is_available() else "cpu"
#scribble controlnet
controlnet = ControlNetModel.from_pretrained(
"xinsir/controlnet-scribble-sdxl-1.0",
torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained(
"sd-community/sdxl-flash",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
)
pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
pipe_control.to(device)
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch()