HiCo_T2I / app.py
boomcheng's picture
Update app.py
5900058 verified
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import ControlNetModel, UniPCMultistepScheduler
from hico_pipeline import StableDiffusionControlNetMultiLayoutPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize model
controlnet = ControlNetModel.from_pretrained("qihoo360/HiCo_T2I", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetMultiLayoutPipeline.from_pretrained(
"krnl/realisticVisionV51_v51VAE", controlnet=[controlnet], torch_dtype=torch.float16
)
pipe = pipe.to(device)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
# Store objects
object_classes_list = ["A photograph of a young woman wrapped in a towel wearing a pair of sunglasses", "a towel", "a young woman wrapped in a towel wearing a pair of sunglasses", "a pair of sunglasses"]
object_bboxes_list = ["0,0,512,512", "17,77,144,155", "16,28,157,155", "82,44,129,63"]
# Function to add or update the prompt in the list
def submit_prompt(prompt):
if object_classes_list:
object_classes_list[0] = prompt # Overwrite the first element if it exists
else:
object_classes_list.insert(0, prompt) # Add to the beginning if the list is empty
if not object_bboxes_list:
object_bboxes_list.insert(0, "0,0,512,512") # Add the default bounding box if the list is empty
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)]
return combined_list, gr.update(interactive=False) # Make the prompt input non-editable
# Function to add a new object with validation
def add_object(object_class, bbox):
try:
# Split and convert bbox string into integers
x1, y1, x2, y2 = map(int, bbox.split(","))
# Validate the coordinates
if x2 < x1 or y2 < y1:
return "Error: x2 cannot be less than x1 and y2 cannot be less than y1.", []
if x1 < 0 or y1 < 0 or x2 > 512 or y2 > 512:
return "Error: Coordinates must be between 0 and 512.", []
# If validation passes, add to the lists
object_classes_list.append(object_class)
object_bboxes_list.append(bbox)
combined_list = [[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)]
return combined_list
except ValueError:
return "Error: Invalid input format. Use x1,y1,x2,y2.", []
# Function to generate images based on added objects
def generate_image(prompt, guidance_scale, num_inference_steps, randomize_seed, seed):
img_width, img_height = 512, 512
r_image = np.zeros((img_height, img_width, 3), dtype=np.uint8)
list_cond_image = []
for bbox in object_bboxes_list:
x1, y1, x2, y2 = map(int, bbox.split(","))
cond_image = np.zeros_like(r_image, dtype=np.uint8)
cond_image[y1:y2, x1:x2] = 255
list_cond_image.append(Image.fromarray(cond_image).convert('RGB'))
if randomize_seed or seed is None:
seed = np.random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
image = pipe(
prompt=prompt,
layo_prompt=object_classes_list,
guess_mode=False,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
image=list_cond_image,
fuse_type="avg",
width=512,
height=512
).images[0]
print(type(image),'image')
return image, seed
# Function to clear all arrays and reset the UI
def clear_arrays():
object_classes_list.clear()
object_bboxes_list.clear()
return [], gr.update(value="", interactive=True) # Clear the objects and reset the prompt
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# HiCo_T2I 512px")
gr.Markdown(" You can directly click **Generate Image** or customize it by first entering the global caption, followed by subcaptions and their corresponding coordinates.")
# Put prompt and submit button in the same row
with gr.Group():
with gr.Row():
# Prompt input and submit button
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt here",
container=False,
)
submit_button = gr.Button("Submit Prompt", scale=0)
# Always visible DataFrame
objects_display = gr.Dataframe(
headers=["Caption", "Bounding Box"],
value=[[cls, bbox] for cls, bbox in zip(object_classes_list, object_bboxes_list)]
)
with gr.Row():
object_class_input = gr.Textbox(label="Sub-caption", placeholder="Enter Sub-caption (e.g., apple)")
bbox_input = gr.Textbox(label="Bounding Box (x1,y1,x2,y2 and >=0 and <=512)", placeholder="Enter bounding box coordinates")
add_button = gr.Button("Add")
# Advanced settings in a collapsible accordion
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50
)
generate_button = gr.Button("Generate Image")
result = gr.Image(label="Generated Image")
# Refresh button to clear arrays and reset inputs (moved below the result)
refresh_button = gr.Button("Refresh")
# Submit the prompt and update the display
submit_button.click(
fn=submit_prompt,
inputs=prompt,
outputs=[objects_display, prompt]
)
# Add object and update display
add_button.click(
fn=add_object,
inputs=[object_class_input, bbox_input],
outputs=[objects_display]
)
# Generate image based on added objects
generate_button.click(
fn=generate_image,
inputs=[prompt, guidance_scale, num_inference_steps, randomize_seed, seed],
outputs=[result, seed]
)
# Refresh button to clear arrays and reset inputs
refresh_button.click(
fn=clear_arrays,
inputs=None,
outputs=[objects_display, prompt]
)
if __name__ == "__main__":
demo.launch()