Spaces:
Running
on
L4
Running
on
L4
import argparse | |
import os | |
from contextlib import nullcontext | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
from transparent_background import Remover | |
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE | |
from spar3d.system import SPAR3D | |
from spar3d.utils import foreground_crop, get_device, remove_background | |
def check_positive(value): | |
ivalue = int(value) | |
if ivalue <= 0: | |
raise argparse.ArgumentTypeError("%s is an invalid positive int value" % value) | |
return ivalue | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"image", type=str, nargs="+", help="Path to input image(s) or folder." | |
) | |
parser.add_argument( | |
"--device", | |
default=get_device(), | |
type=str, | |
help=f"Device to use. If no CUDA/MPS-compatible device is found, the baking will fail. Default: '{get_device()}'", | |
) | |
parser.add_argument( | |
"--pretrained-model", | |
default="stabilityai/stable-point-aware-3d", | |
type=str, | |
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/stable-point-aware-3d'", | |
) | |
parser.add_argument( | |
"--foreground-ratio", | |
default=1.3, | |
type=float, | |
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85", | |
) | |
parser.add_argument( | |
"--output-dir", | |
default="output/", | |
type=str, | |
help="Output directory to save the results. Default: 'output/'", | |
) | |
parser.add_argument( | |
"--texture-resolution", | |
default=1024, | |
type=int, | |
help="Texture atlas resolution. Default: 1024", | |
) | |
parser.add_argument( | |
"--low-vram-mode", | |
action="store_true", | |
help=( | |
"Use low VRAM mode. SPAR3D consumes 10.5GB of VRAM by default. " | |
"This mode will reduce the VRAM consumption to roughly 7GB but in exchange " | |
"the model will be slower. Default: False" | |
), | |
) | |
remesh_choices = ["none"] | |
if TRIANGLE_REMESH_AVAILABLE: | |
remesh_choices.append("triangle") | |
if QUAD_REMESH_AVAILABLE: | |
remesh_choices.append("quad") | |
parser.add_argument( | |
"--remesh_option", | |
choices=remesh_choices, | |
default="none", | |
help="Remeshing option", | |
) | |
if TRIANGLE_REMESH_AVAILABLE or QUAD_REMESH_AVAILABLE: | |
parser.add_argument( | |
"--reduction_count_type", | |
choices=["keep", "vertex", "faces"], | |
default="keep", | |
help="Vertex count type", | |
) | |
parser.add_argument( | |
"--target_count", | |
type=check_positive, | |
help="Selected target count.", | |
default=2000, | |
) | |
parser.add_argument( | |
"--batch_size", default=1, type=int, help="Batch size for inference" | |
) | |
args = parser.parse_args() | |
# Ensure args.device contains cuda | |
devices = ["cuda", "mps", "cpu"] | |
if not any(args.device in device for device in devices): | |
raise ValueError("Invalid device. Use cuda, mps or cpu") | |
output_dir = args.output_dir | |
os.makedirs(output_dir, exist_ok=True) | |
device = args.device | |
if not (torch.cuda.is_available() or torch.backends.mps.is_available()): | |
device = "cpu" | |
print("Device used: ", device) | |
model = SPAR3D.from_pretrained( | |
args.pretrained_model, | |
config_name="config.yaml", | |
weight_name="model.safetensors", | |
low_vram_mode=args.low_vram_mode, | |
) | |
model.to(device) | |
model.eval() | |
bg_remover = Remover(device=device) | |
images = [] | |
idx = 0 | |
for image_path in args.image: | |
def handle_image(image_path, idx): | |
image = remove_background( | |
Image.open(image_path).convert("RGBA"), bg_remover | |
) | |
image = foreground_crop(image, args.foreground_ratio) | |
os.makedirs(os.path.join(output_dir, str(idx)), exist_ok=True) | |
image.save(os.path.join(output_dir, str(idx), "input.png")) | |
images.append(image) | |
if os.path.isdir(image_path): | |
image_paths = [ | |
os.path.join(image_path, f) | |
for f in os.listdir(image_path) | |
if f.endswith((".png", ".jpg", ".jpeg")) | |
] | |
for image_path in image_paths: | |
handle_image(image_path, idx) | |
idx += 1 | |
else: | |
handle_image(image_path, idx) | |
idx += 1 | |
vertex_count = ( | |
-1 | |
if args.reduction_count_type == "keep" | |
else ( | |
args.target_count | |
if args.reduction_count_type == "vertex" | |
else args.target_count // 2 | |
) | |
) | |
for i in tqdm(range(0, len(images), args.batch_size)): | |
image = images[i : i + args.batch_size] | |
if torch.cuda.is_available(): | |
torch.cuda.reset_peak_memory_stats() | |
with torch.no_grad(): | |
with ( | |
torch.autocast(device_type=device, dtype=torch.bfloat16) | |
if "cuda" in device | |
else nullcontext() | |
): | |
mesh, glob_dict = model.run_image( | |
image, | |
bake_resolution=args.texture_resolution, | |
remesh=args.remesh_option, | |
vertex_count=vertex_count, | |
return_points=True, | |
) | |
if torch.cuda.is_available(): | |
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB") | |
elif torch.backends.mps.is_available(): | |
print( | |
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB" | |
) | |
if len(image) == 1: | |
out_mesh_path = os.path.join(output_dir, str(i), "mesh.glb") | |
mesh.export(out_mesh_path, include_normals=True) | |
out_points_path = os.path.join(output_dir, str(i), "points.ply") | |
glob_dict["point_clouds"][0].export(out_points_path) | |
else: | |
for j in range(len(mesh)): | |
out_mesh_path = os.path.join(output_dir, str(i + j), "mesh.glb") | |
mesh[j].export(out_mesh_path, include_normals=True) | |
out_points_path = os.path.join(output_dir, str(i + j), "points.ply") | |
glob_dict["point_clouds"][j].export(out_points_path) | |