sepformer-whamr / hyperparams.yaml
mirco
cleaned inference hyparam file
efab5aa
# ################################
# Model: Inference for source separation with SepFormer
# https://arxiv.org/abs/2010.13154
# Generated from speechbrain/recipes/WSJ0Mix/separation/train/hparams/sepformer-whamr.yaml
# Dataset : Whamr
# ###############################
# Parameters
sample_rate: 8000
num_spks: 2
# Specifying the network
Encoder: !new:speechbrain.lobes.models.dual_path.Encoder
kernel_size: 16
out_channels: 256
SBtfintra: !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
num_layers: 8
d_model: 256
nhead: 8
d_ffn: 1024
dropout: 0
use_positional_encoding: true
norm_before: true
SBtfinter: !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
num_layers: 8
d_model: 256
nhead: 8
d_ffn: 1024
dropout: 0
use_positional_encoding: true
norm_before: true
MaskNet: !new:speechbrain.lobes.models.dual_path.Dual_Path_Model
num_spks: !ref <num_spks>
in_channels: 256
out_channels: 256
num_layers: 2
K: 250
intra_model: !ref <SBtfintra>
inter_model: !ref <SBtfinter>
norm: ln
linear_layer_after_inter_intra: false
skip_around_intra: true
Decoder: !new:speechbrain.lobes.models.dual_path.Decoder
in_channels: 256
out_channels: 1
kernel_size: 16
stride: 8
bias: false
modules:
encoder: !ref <Encoder>
decoder: !ref <Decoder>
masknet: !ref <MaskNet>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
masknet: !ref <MaskNet>
encoder: !ref <Encoder>
decoder: !ref <Decoder>