koukyo1994
commited on
upload LFQ implementation
Browse files- modeling_lfq_tokenizer.py +616 -27
modeling_lfq_tokenizer.py
CHANGED
@@ -4,40 +4,629 @@ Code reference: https://github.com/TencentARC/Open-MAGVIT2
|
|
4 |
"""
|
5 |
|
6 |
|
7 |
-
from
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
model_type = "resnet_encoder_decoder"
|
12 |
|
13 |
-
def __init__(self, **kwargs):
|
14 |
-
super().__init__(**kwargs)
|
15 |
-
self.ch = kwargs.get("ch", 128)
|
16 |
-
self.in_channels = kwargs.get("in_channels", 3)
|
17 |
-
self.out_ch = kwargs.get("out_ch", 3)
|
18 |
-
self.z_channels = kwargs.get("z_channels", 18)
|
19 |
-
self.num_res_blocks = kwargs.get("num_res_blocks", 2)
|
20 |
-
self.ch_mult = kwargs.get("ch_mult", [1, 1, 2, 2, 4])
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
-
class QuantizerConfig(PretrainedConfig):
|
24 |
-
model_type = "lfq_quantizer"
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
def
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
|
7 |
+
from math import log2, ceil
|
8 |
+
from collections import namedtuple
|
9 |
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from einops import rearrange, reduce, pack, unpack
|
14 |
+
from torch import einsum
|
15 |
+
from torch.nn import Module
|
16 |
+
from transformers import PreTrainedModel
|
17 |
|
18 |
+
from .configuration_lfq_tokenizer import LFQTokenizerConfig
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def swish(x):
|
22 |
+
# swish
|
23 |
+
return x * torch.sigmoid(x)
|
24 |
|
|
|
|
|
25 |
|
26 |
+
class ResBlock(nn.Module):
|
27 |
+
def __init__(self,
|
28 |
+
in_filters,
|
29 |
+
out_filters,
|
30 |
+
use_conv_shortcut = False
|
31 |
+
) -> None:
|
32 |
+
super().__init__()
|
33 |
|
34 |
+
self.in_filters = in_filters
|
35 |
+
self.out_filters = out_filters
|
36 |
+
self.use_conv_shortcut = use_conv_shortcut
|
37 |
|
38 |
+
self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
|
39 |
+
self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)
|
40 |
+
|
41 |
+
self.conv1 = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
|
42 |
+
self.conv2 = nn.Conv2d(out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
|
43 |
+
|
44 |
+
if in_filters != out_filters:
|
45 |
+
if self.use_conv_shortcut:
|
46 |
+
self.conv_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
|
47 |
+
else:
|
48 |
+
self.nin_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False)
|
49 |
+
|
50 |
+
|
51 |
+
def forward(self, x, **kwargs):
|
52 |
+
residual = x
|
53 |
+
|
54 |
+
x = self.norm1(x)
|
55 |
+
x = swish(x)
|
56 |
+
x = self.conv1(x)
|
57 |
+
x = self.norm2(x)
|
58 |
+
x = swish(x)
|
59 |
+
x = self.conv2(x)
|
60 |
+
if self.in_filters != self.out_filters:
|
61 |
+
if self.use_conv_shortcut:
|
62 |
+
residual = self.conv_shortcut(residual)
|
63 |
+
else:
|
64 |
+
residual = self.nin_shortcut(residual)
|
65 |
+
|
66 |
+
return x + residual
|
67 |
+
|
68 |
+
class Encoder(nn.Module):
|
69 |
+
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4)):
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.in_channels = in_channels
|
73 |
+
self.z_channels = z_channels
|
74 |
+
|
75 |
+
self.num_res_blocks = num_res_blocks
|
76 |
+
self.num_blocks = len(ch_mult)
|
77 |
+
|
78 |
+
self.conv_in = nn.Conv2d(in_channels,
|
79 |
+
ch,
|
80 |
+
kernel_size=(3, 3),
|
81 |
+
padding=1,
|
82 |
+
bias=False
|
83 |
+
)
|
84 |
+
|
85 |
+
## construct the model
|
86 |
+
self.down = nn.ModuleList()
|
87 |
+
|
88 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
89 |
+
for i_level in range(self.num_blocks):
|
90 |
+
block = nn.ModuleList()
|
91 |
+
block_in = ch*in_ch_mult[i_level] #[1, 1, 2, 2, 4]
|
92 |
+
block_out = ch*ch_mult[i_level] #[1, 2, 2, 4]
|
93 |
+
for _ in range(self.num_res_blocks):
|
94 |
+
block.append(ResBlock(block_in, block_out))
|
95 |
+
block_in = block_out
|
96 |
+
|
97 |
+
down = nn.Module()
|
98 |
+
down.block = block
|
99 |
+
if i_level < self.num_blocks - 1:
|
100 |
+
down.downsample = nn.Conv2d(block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1)
|
101 |
+
|
102 |
+
self.down.append(down)
|
103 |
+
|
104 |
+
### mid
|
105 |
+
self.mid_block = nn.ModuleList()
|
106 |
+
for res_idx in range(self.num_res_blocks):
|
107 |
+
self.mid_block.append(ResBlock(block_in, block_in))
|
108 |
+
|
109 |
+
### end
|
110 |
+
self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
|
111 |
+
self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1))
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
|
115 |
+
## down
|
116 |
+
x = self.conv_in(x)
|
117 |
+
for i_level in range(self.num_blocks):
|
118 |
+
for i_block in range(self.num_res_blocks):
|
119 |
+
x = self.down[i_level].block[i_block](x)
|
120 |
+
|
121 |
+
if i_level < self.num_blocks - 1:
|
122 |
+
x = self.down[i_level].downsample(x)
|
123 |
+
|
124 |
+
## mid
|
125 |
+
for res in range(self.num_res_blocks):
|
126 |
+
x = self.mid_block[res](x)
|
127 |
+
|
128 |
+
|
129 |
+
x = self.norm_out(x)
|
130 |
+
x = swish(x)
|
131 |
+
x = self.conv_out(x)
|
132 |
+
|
133 |
+
return x
|
134 |
+
|
135 |
+
|
136 |
+
class Decoder(nn.Module):
|
137 |
+
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4)) -> None:
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.ch = ch
|
141 |
+
self.num_blocks = len(ch_mult)
|
142 |
+
self.num_res_blocks = num_res_blocks
|
143 |
+
self.in_channels = in_channels
|
144 |
+
|
145 |
+
block_in = ch*ch_mult[self.num_blocks-1]
|
146 |
+
|
147 |
+
self.conv_in = nn.Conv2d(
|
148 |
+
z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
|
149 |
+
)
|
150 |
+
|
151 |
+
self.mid_block = nn.ModuleList()
|
152 |
+
for res_idx in range(self.num_res_blocks):
|
153 |
+
self.mid_block.append(ResBlock(block_in, block_in))
|
154 |
+
|
155 |
+
self.up = nn.ModuleList()
|
156 |
+
|
157 |
+
for i_level in reversed(range(self.num_blocks)):
|
158 |
+
block = nn.ModuleList()
|
159 |
+
block_out = ch*ch_mult[i_level]
|
160 |
+
for i_block in range(self.num_res_blocks):
|
161 |
+
block.append(ResBlock(block_in, block_out))
|
162 |
+
block_in = block_out
|
163 |
+
|
164 |
+
up = nn.Module()
|
165 |
+
up.block = block
|
166 |
+
if i_level > 0:
|
167 |
+
up.upsample = Upsampler(block_in)
|
168 |
+
self.up.insert(0, up)
|
169 |
+
|
170 |
+
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)
|
171 |
+
|
172 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)
|
173 |
+
|
174 |
+
def forward(self, z):
|
175 |
+
|
176 |
+
z = self.conv_in(z)
|
177 |
+
|
178 |
+
## mid
|
179 |
+
for res in range(self.num_res_blocks):
|
180 |
+
z = self.mid_block[res](z)
|
181 |
+
|
182 |
+
## upsample
|
183 |
+
for i_level in reversed(range(self.num_blocks)):
|
184 |
+
for i_block in range(self.num_res_blocks):
|
185 |
+
z = self.up[i_level].block[i_block](z)
|
186 |
+
|
187 |
+
if i_level > 0:
|
188 |
+
z = self.up[i_level].upsample(z)
|
189 |
+
|
190 |
+
z = self.norm_out(z)
|
191 |
+
z = swish(z)
|
192 |
+
z = self.conv_out(z)
|
193 |
+
|
194 |
+
return z
|
195 |
+
|
196 |
+
|
197 |
+
def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
|
198 |
+
""" Depth-to-Space DCR mode (depth-column-row) core implementation.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
|
202 |
+
block_size (int): block side size
|
203 |
+
"""
|
204 |
+
# check inputs
|
205 |
+
if x.dim() < 3:
|
206 |
+
raise ValueError(
|
207 |
+
f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
|
208 |
+
)
|
209 |
+
c, h, w = x.shape[-3:]
|
210 |
+
|
211 |
+
s = block_size**2
|
212 |
+
if c % s != 0:
|
213 |
+
raise ValueError(
|
214 |
+
f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
|
215 |
+
)
|
216 |
+
|
217 |
+
outer_dims = x.shape[:-3]
|
218 |
+
|
219 |
+
# splitting two additional dimensions from the channel dimension
|
220 |
+
x = x.view(-1, block_size, block_size, c // s, h, w)
|
221 |
+
|
222 |
+
# putting the two new dimensions along H and W
|
223 |
+
x = x.permute(0, 3, 4, 1, 5, 2)
|
224 |
+
|
225 |
+
# merging the two new dimensions with H and W
|
226 |
+
x = x.contiguous().view(*outer_dims, c // s, h * block_size,
|
227 |
+
w * block_size)
|
228 |
+
|
229 |
+
return x
|
230 |
+
|
231 |
+
class Upsampler(nn.Module):
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
dim_out = None
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
dim_out = dim * 4
|
239 |
+
self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
|
240 |
+
self.depth2space = depth_to_space
|
241 |
+
|
242 |
+
def forward(self, x):
|
243 |
+
"""
|
244 |
+
input_image: [B C H W]
|
245 |
+
"""
|
246 |
+
out = self.conv1(x)
|
247 |
+
out = self.depth2space(out, block_size=2)
|
248 |
+
return out
|
249 |
+
|
250 |
+
|
251 |
+
class AdaptiveGroupNorm(nn.Module):
|
252 |
+
def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6):
|
253 |
+
super().__init__()
|
254 |
+
self.gn = nn.GroupNorm(num_groups=32, num_channels=in_filters, eps=eps, affine=False)
|
255 |
+
# self.lin = nn.Linear(z_channels, in_filters * 2)
|
256 |
+
self.gamma = nn.Linear(z_channel, in_filters)
|
257 |
+
self.beta = nn.Linear(z_channel, in_filters)
|
258 |
+
self.eps = eps
|
259 |
+
|
260 |
+
def forward(self, x, quantizer):
|
261 |
+
B, C, _, _ = x.shape
|
262 |
+
# quantizer = F.adaptive_avg_pool2d(quantizer, (1, 1))
|
263 |
+
### calcuate var for scale
|
264 |
+
scale = rearrange(quantizer, "b c h w -> b c (h w)")
|
265 |
+
scale = scale.var(dim=-1) + self.eps #not unbias
|
266 |
+
scale = scale.sqrt()
|
267 |
+
scale = self.gamma(scale).view(B, C, 1, 1)
|
268 |
+
|
269 |
+
### calculate mean for bias
|
270 |
+
bias = rearrange(quantizer, "b c h w -> b c (h w)")
|
271 |
+
bias = bias.mean(dim=-1)
|
272 |
+
bias = self.beta(bias).view(B, C, 1, 1)
|
273 |
+
|
274 |
+
x = self.gn(x)
|
275 |
+
x = scale * x + bias
|
276 |
+
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
# constants
|
281 |
+
|
282 |
+
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'codebook_entropy', 'commitment', 'avg_probs'])
|
283 |
+
|
284 |
+
# helper functions
|
285 |
+
|
286 |
+
def exists(v):
|
287 |
+
return v is not None
|
288 |
+
|
289 |
+
def default(*args):
|
290 |
+
for arg in args:
|
291 |
+
if exists(arg):
|
292 |
+
return arg() if callable(arg) else arg
|
293 |
+
return None
|
294 |
+
|
295 |
+
def pack_one(t, pattern):
|
296 |
+
return pack([t], pattern)
|
297 |
+
|
298 |
+
def unpack_one(t, ps, pattern):
|
299 |
+
return unpack(t, ps, pattern)[0]
|
300 |
+
|
301 |
+
# entropy
|
302 |
+
|
303 |
+
def entropy(prob):
|
304 |
+
return (-prob * torch.log(prob + 1e-5)).sum(dim=-1)
|
305 |
+
|
306 |
+
# class
|
307 |
+
|
308 |
+
def mult_along_first_dims(x, y):
|
309 |
+
"""
|
310 |
+
returns x * y elementwise along the leading dimensions of y
|
311 |
+
"""
|
312 |
+
ndim_to_expand = x.ndim - y.ndim
|
313 |
+
for _ in range(ndim_to_expand):
|
314 |
+
y = y.unsqueeze(-1)
|
315 |
+
return x * y
|
316 |
+
|
317 |
+
def masked_mean(x, m):
|
318 |
+
"""
|
319 |
+
takes the mean of the elements of x that are not masked
|
320 |
+
the mean is taken along the shared leading dims of m
|
321 |
+
equivalent to: x[m].mean(tuple(range(m.ndim)))
|
322 |
+
|
323 |
+
The benefit of using masked_mean rather than using
|
324 |
+
tensor indexing is that masked_mean is much faster
|
325 |
+
for torch-compile on batches.
|
326 |
+
|
327 |
+
The drawback is larger floating point errors
|
328 |
+
"""
|
329 |
+
x = mult_along_first_dims(x, m)
|
330 |
+
x = x / m.sum()
|
331 |
+
return x.sum(tuple(range(m.ndim)))
|
332 |
+
|
333 |
+
def entropy_loss(
|
334 |
+
logits,
|
335 |
+
mask=None,
|
336 |
+
temperature=0.01,
|
337 |
+
sample_minimization_weight=1.0,
|
338 |
+
batch_maximization_weight=1.0,
|
339 |
+
eps=1e-5,
|
340 |
+
):
|
341 |
+
"""
|
342 |
+
Entropy loss of unnormalized logits
|
343 |
+
|
344 |
+
logits: Affinities are over the last dimension
|
345 |
+
|
346 |
+
https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
|
347 |
+
LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
|
348 |
"""
|
349 |
+
probs = F.softmax(logits / temperature, -1)
|
350 |
+
log_probs = F.log_softmax(logits / temperature + eps, -1)
|
351 |
+
|
352 |
+
if mask is not None:
|
353 |
+
avg_probs = masked_mean(probs, mask)
|
354 |
+
else:
|
355 |
+
avg_probs = reduce(probs, "... D -> D", "mean")
|
356 |
+
|
357 |
+
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))
|
358 |
+
|
359 |
+
sample_entropy = -torch.sum(probs * log_probs, -1)
|
360 |
+
if mask is not None:
|
361 |
+
sample_entropy = masked_mean(sample_entropy, mask).mean()
|
362 |
+
else:
|
363 |
+
sample_entropy = torch.mean(sample_entropy)
|
364 |
+
|
365 |
+
loss = (sample_minimization_weight * sample_entropy) - (
|
366 |
+
batch_maximization_weight * avg_entropy
|
367 |
+
)
|
368 |
+
|
369 |
+
return sample_entropy, avg_entropy, loss
|
370 |
+
|
371 |
+
|
372 |
+
class LFQ(Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
*,
|
376 |
+
dim = None,
|
377 |
+
codebook_size = None,
|
378 |
+
num_codebooks = 1,
|
379 |
+
sample_minimization_weight=1.0,
|
380 |
+
batch_maximization_weight=1.0,
|
381 |
+
token_factorization = False,
|
382 |
+
):
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
# some assert validations
|
386 |
+
|
387 |
+
assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ'
|
388 |
+
assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})'
|
389 |
+
|
390 |
+
self.codebook_size = default(codebook_size, lambda: 2 ** dim)
|
391 |
+
self.codebook_dim = int(log2(codebook_size))
|
392 |
+
|
393 |
+
codebook_dims = self.codebook_dim * num_codebooks
|
394 |
+
dim = default(dim, codebook_dims)
|
395 |
+
|
396 |
+
has_projections = dim != codebook_dims
|
397 |
+
self.has_projections = has_projections
|
398 |
+
|
399 |
+
self.dim = dim
|
400 |
+
self.codebook_dim = self.codebook_dim
|
401 |
+
self.num_codebooks = num_codebooks
|
402 |
+
|
403 |
+
# for entropy loss
|
404 |
+
self.sample_minimization_weight = sample_minimization_weight
|
405 |
+
self.batch_maximization_weight = batch_maximization_weight
|
406 |
+
|
407 |
+
# for no auxiliary loss, during inference
|
408 |
+
self.token_factorization = token_factorization ## only utilized in second stage
|
409 |
+
if not self.token_factorization: #for first stage model
|
410 |
+
self.register_buffer('mask', 2 ** torch.arange(self.codebook_dim - 1, -1, -1), persistent=False)
|
411 |
+
else:
|
412 |
+
k = self.codebook_dim // 2
|
413 |
+
self.register_buffer("mask", 2 ** torch.arange(k - 1, -1, -1), persistent=False)
|
414 |
+
|
415 |
+
self.register_buffer('zero', torch.tensor(0.), persistent = False)
|
416 |
+
|
417 |
+
# codes
|
418 |
+
all_codes = torch.arange(codebook_size)
|
419 |
+
bits = self.indices_to_bits(all_codes)
|
420 |
+
codebook = bits * 2.0 - 1.0
|
421 |
+
|
422 |
+
self.register_buffer('codebook', codebook, persistent = False)
|
423 |
+
|
424 |
+
@property
|
425 |
+
def dtype(self):
|
426 |
+
return self.codebook.dtype
|
427 |
+
|
428 |
+
def indices_to_bits(self, x):
|
429 |
+
"""
|
430 |
+
x: long tensor of indices for constructing codebook, but actually not utilized in all the experiments.
|
431 |
+
|
432 |
+
returns big endian bits
|
433 |
+
"""
|
434 |
+
mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long)
|
435 |
+
# x is now big endian bits, the last dimension being the bits
|
436 |
+
x = (x.unsqueeze(-1) & mask) != 0
|
437 |
+
return x
|
438 |
+
|
439 |
+
def get_codebook_entry(self, x, bhwc):
|
440 |
+
if self.token_factorization:
|
441 |
+
k = self.codebook_dim // 2
|
442 |
+
mask = 2 ** torch.arange(k - 1, -1, -1, device=x.device, dtype=torch.long)
|
443 |
+
else:
|
444 |
+
mask = 2 ** torch.arange(self.codebook_dim-1, -1, -1, device=x.device, dtype=torch.long)
|
445 |
+
|
446 |
+
x = (x.unsqueeze(-1) & mask) != 0
|
447 |
+
x = x * 2.0 - 1.0 #back to the float
|
448 |
+
## scale back to the desired shape
|
449 |
+
b, h, w, c = bhwc
|
450 |
+
x = rearrange(x, "b (h w) c -> b h w c", h=h, w=w, c=c)
|
451 |
+
x = rearrange(x, "b h w c -> b c h w")
|
452 |
+
return x
|
453 |
+
|
454 |
+
def bits_to_indices(self, bits):
|
455 |
+
"""
|
456 |
+
bits: bool tensor of big endian bits, where the last dimension is the bit dimension
|
457 |
+
|
458 |
+
returns indices, which are long integers from 0 to self.codebook_size
|
459 |
+
"""
|
460 |
+
assert bits.shape[-1] == self.codebook_dim
|
461 |
+
indices = 2 ** torch.arange(
|
462 |
+
0,
|
463 |
+
self.codebook_dim,
|
464 |
+
1,
|
465 |
+
dtype=torch.long,
|
466 |
+
device=bits.device,
|
467 |
+
)
|
468 |
+
return (bits * indices).sum(-1)
|
469 |
+
|
470 |
+
def decode(self, x):
|
471 |
+
"""
|
472 |
+
x: ... NH
|
473 |
+
where NH is number of codebook heads
|
474 |
+
A longtensor of codebook indices, containing values from
|
475 |
+
0 to self.codebook_size
|
476 |
+
"""
|
477 |
+
x = self.indices_to_bits(x)
|
478 |
+
# to some sort of float
|
479 |
+
x = x.to(self.dtype)
|
480 |
+
# -1 or 1
|
481 |
+
x = x * 2 - 1
|
482 |
+
x = rearrange(x, "... NC Z-> ... (NC Z)")
|
483 |
+
return x
|
484 |
+
|
485 |
+
def forward(
|
486 |
+
self,
|
487 |
+
x,
|
488 |
+
return_loss_breakdown = False,
|
489 |
+
mask = None,
|
490 |
+
return_loss = True,
|
491 |
+
):
|
492 |
+
"""
|
493 |
+
einstein notation
|
494 |
+
b - batch
|
495 |
+
n - sequence (or flattened spatial dimensions)
|
496 |
+
d - feature dimension, which is also log2(codebook size)
|
497 |
+
c - number of codebook dim
|
498 |
+
"""
|
499 |
+
|
500 |
+
|
501 |
+
x = rearrange(x, 'b d ... -> b ... d')
|
502 |
+
x, ps = pack_one(x, 'b * d')
|
503 |
+
# split out number of codebooks
|
504 |
+
|
505 |
+
x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks)
|
506 |
+
|
507 |
+
|
508 |
+
codebook_value = torch.Tensor([1.0]).to(device=x.device, dtype=x.dtype)
|
509 |
+
quantized = torch.where(x > 0, codebook_value, -codebook_value) # higher than 0 filled
|
510 |
+
|
511 |
+
# calculate indices
|
512 |
+
if self.token_factorization:
|
513 |
+
k = self.codebook_dim // 2
|
514 |
+
indices_pre = reduce((quantized[..., :k] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
|
515 |
+
indices_post = reduce((quantized[..., k:] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
|
516 |
+
# indices_post = 2**k + indices_post #shifter to the 1024
|
517 |
+
else:
|
518 |
+
indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
|
519 |
+
|
520 |
+
# entropy aux loss
|
521 |
+
|
522 |
+
if self.training and return_loss:
|
523 |
+
logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
|
524 |
+
# the same as euclidean distance up to a constant
|
525 |
+
per_sample_entropy, codebook_entropy, entropy_aux_loss = entropy_loss(
|
526 |
+
logits = logits,
|
527 |
+
sample_minimization_weight = self.sample_minimization_weight,
|
528 |
+
batch_maximization_weight = self.batch_maximization_weight
|
529 |
+
)
|
530 |
+
|
531 |
+
avg_probs = self.zero
|
532 |
+
else:
|
533 |
+
## calculate the codebook_entropy needed for one batch evaluation
|
534 |
+
#------------------------------------------------------------------
|
535 |
+
# logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
|
536 |
+
# probs = F.softmax(logits / 0.01, -1)
|
537 |
+
# avg_probs = reduce(probs, "b n c d -> b d", "mean")
|
538 |
+
# avg_probs = torch.sum(avg_probs, 0) #batch dimension
|
539 |
+
#-------------------------------------------------------------------
|
540 |
+
# if not training, just return dummy 0
|
541 |
+
per_sample_entropy = codebook_entropy = self.zero
|
542 |
+
entropy_aux_loss = self.zero
|
543 |
+
avg_probs = self.zero
|
544 |
+
|
545 |
+
# commit loss
|
546 |
+
|
547 |
+
if self.training:
|
548 |
+
commit_loss = F.mse_loss(x, quantized.detach(), reduction = 'none')
|
549 |
+
|
550 |
+
if exists(mask):
|
551 |
+
commit_loss = commit_loss[mask]
|
552 |
+
|
553 |
+
commit_loss = commit_loss.mean()
|
554 |
+
else:
|
555 |
+
commit_loss = self.zero
|
556 |
+
|
557 |
+
|
558 |
+
# use straight-through gradients (optionally with custom activation fn) if training
|
559 |
+
|
560 |
+
quantized = x + (quantized - x).detach() #transfer to quantized
|
561 |
+
|
562 |
+
# merge back codebook dim
|
563 |
+
|
564 |
+
quantized = rearrange(quantized, 'b n c d -> b n (c d)')
|
565 |
+
|
566 |
+
# reconstitute image or video dimensions
|
567 |
+
|
568 |
+
quantized = unpack_one(quantized, ps, 'b * d')
|
569 |
+
quantized = rearrange(quantized, 'b ... d -> b d ...')
|
570 |
+
|
571 |
+
|
572 |
+
if self.token_factorization:
|
573 |
+
indices_pre = unpack_one(indices_pre, ps, "b * c")
|
574 |
+
indices_post = unpack_one(indices_post, ps, "b * c")
|
575 |
+
indices_pre = indices_pre.flatten()
|
576 |
+
indices_post = indices_post.flatten()
|
577 |
+
indices = (indices_pre, indices_post)
|
578 |
+
else:
|
579 |
+
indices = unpack_one(indices, ps, 'b * c')
|
580 |
+
indices = indices.flatten()
|
581 |
+
|
582 |
+
ret = (quantized, entropy_aux_loss, indices)
|
583 |
+
|
584 |
+
if not return_loss_breakdown:
|
585 |
+
return ret
|
586 |
+
|
587 |
+
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss, avg_probs)
|
588 |
+
|
589 |
+
|
590 |
+
class LFQTokenizer(PreTrainedModel):
|
591 |
+
config_class = LFQTokenizerConfig
|
592 |
+
|
593 |
+
def __init__(self, config: LFQTokenizerConfig):
|
594 |
+
super().__init__(config)
|
595 |
+
|
596 |
+
self.encoder = Encoder(**config.encoder_decoder_config)
|
597 |
+
self.decoder = Decoder(**config.encoder_decoder_config)
|
598 |
+
self.quantize = LFQ(**config.quantizer_config)
|
599 |
+
|
600 |
+
def encode(self, x):
|
601 |
+
h = self.encoder(x)
|
602 |
+
(quant, emb_loss, info), loss_breakdown = self.quantize(h, return_loss_breakdown=True)
|
603 |
+
return quant, emb_loss, info, loss_breakdown
|
604 |
+
|
605 |
+
def decode(self, quant):
|
606 |
+
return self.decoder(quant)
|
607 |
+
|
608 |
+
def forward(self, input):
|
609 |
+
quant, diff, _, loss_breakdown = self.encode(input)
|
610 |
+
dec = self.decoder(quant)
|
611 |
+
return dec, diff, loss_breakdown
|
612 |
+
|
613 |
+
def tokenize(self, input):
|
614 |
+
_, _, tokens, _ = self.encode(input)
|
615 |
+
return tokens
|
616 |
+
|
617 |
+
def get_last_layer(self):
|
618 |
+
return self.decoder.conv_out.weight
|
619 |
|
620 |
+
def decode_tokens(self, tokens, shape: tuple):
|
621 |
+
if self.quantize.token_factorization:
|
622 |
+
tokens_pre, tokens_post = tokens[0], tokens[1]
|
623 |
+
quant_pre = self.quantize.get_codebook_entry(tokens_pre, shape)
|
624 |
+
quant_post = self.quantize.get_codebook_entry(tokens_post, shape)
|
625 |
+
quant = torch.concat([quant_pre, quant_post], dim=1)
|
626 |
+
return self.decode(quant)
|
627 |
+
else:
|
628 |
+
if tokens.ndim == 1:
|
629 |
+
batch_size = shape[0]
|
630 |
+
tokens = tokens.view(batch_size, -1)
|
631 |
+
quant = self.quantize.get_codebook_entry(tokens, shape)
|
632 |
+
return self.decode(quant)
|