pszemraj's picture
Adding Evaluation Results (#4)
1aef4be verified
metadata
license: apache-2.0
base_model: BEE-spoke-data/smol_llama-220M-GQA
datasets:
  - teknium/openhermes
inference:
  parameters:
    do_sample: true
    renormalize_logits: true
    temperature: 0.25
    top_p: 0.95
    top_k: 50
    min_new_tokens: 2
    max_new_tokens: 96
    repetition_penalty: 1.03
    no_repeat_ngram_size: 5
    epsilon_cutoff: 0.0008
widget:
  - text: >
      Below is an instruction that describes a task, paired with an input that
      provides further context. Write a response that appropriately completes
      the request.  
         
      ### Instruction:  
        
      Write an ode to Chipotle burritos. 
        
      ### Response:  
    example_title: burritos
model-index:
  - name: smol_llama-220M-openhermes
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 25.17
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 28.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 26.17
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 43.08
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 52.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0.61
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 15.55
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 3.11
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.35
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.22
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.34
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes
          name: Open LLM Leaderboard

BEE-spoke-data/smol_llama-220M-openhermes

Please note that this is an experiment, and the model has limitations because it is smol.

prompt format is alpaca

Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.  

### Instruction:  

How can I increase my meme production/output? Currently, I only create them in ancient babylonian which is time consuming.  

### Inputs:

### Response:

It was trained on inputs so if you have inputs (like some text to ask a question about) then include it under ### Inputs:

Example

Output on the text above ^. The inference API is set to sample with low temp so you should see (at least slightly) different generations each time.

image/png

Note that the inference API parameters used here are an initial educated guess, and may be updated over time:

inference:
  parameters:
    do_sample: true
    renormalize_logits: true
    temperature: 0.25
    top_p: 0.95
    top_k: 50
    min_new_tokens: 2
    max_new_tokens: 96
    repetition_penalty: 1.03
    no_repeat_ngram_size: 5
    epsilon_cutoff: 0.0008

Feel free to experiment with the parameters using the model in Python and let us know if you have improved results with other params!

Data

Note that this checkpoint was fine-tuned on teknium/openhermes, which is generated/synthetic data by an OpenAI model. This means usage of this checkpoint should follow their terms of use: https://openai.com/policies/terms-of-use


Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.34
AI2 Reasoning Challenge (25-Shot) 25.17
HellaSwag (10-Shot) 28.98
MMLU (5-Shot) 26.17
TruthfulQA (0-shot) 43.08
Winogrande (5-shot) 52.01
GSM8k (5-shot) 0.61

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 4.76
IFEval (0-Shot) 15.55
BBH (3-Shot) 3.11
MATH Lvl 5 (4-Shot) 0.00
GPQA (0-shot) 2.35
MuSR (0-shot) 6.22
MMLU-PRO (5-shot) 1.34