my_awesome_wnut_model

This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0006
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 80 0.0089 0.0 0.0 0.0 1.0
No log 2.0 160 0.0034 0.0 0.0 0.0 1.0
No log 3.0 240 0.0020 0.0 0.0 0.0 1.0
No log 4.0 320 0.0014 0.0 0.0 0.0 1.0
No log 5.0 400 0.0011 0.0 0.0 0.0 1.0
No log 6.0 480 0.0009 0.0 0.0 0.0 1.0
0.0224 7.0 560 0.0008 0.0 0.0 0.0 1.0
0.0224 8.0 640 0.0007 0.0 0.0 0.0 1.0
0.0224 9.0 720 0.0006 0.0 0.0 0.0 1.0
0.0224 10.0 800 0.0006 0.0 0.0 0.0 1.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cpu
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
65.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Elbub/my_awesome_wnut_model

Finetuned
(229)
this model