A Pythia Chat Model of 31M Parameters

Recommended prompt format

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant

Recommended inference parameters

penalty_alpha: 0.5
top_k: 2
repetition_penalty: 1.0016

Datasets and parameters used for training

SFTTrainer(
    model,
    train_dataset=train_dataset,
    dataset_text_field="text",
    eval_dataset=eval_dataset,
    max_seq_length=2048,
    packing=True,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=16,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=10,
        eval_steps=10,
        save_steps=10,
        warmup_steps=50,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.01,
        save_total_limit=10,
        neftune_noise_alpha=5,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)
DPOTrainer(
    model,
    beta=0.1,
    train_dataset=dataset,
    tokenizer=tokenizer,
    eval_dataset=eval_dataset,
    max_length=1536,
    max_prompt_length=1024,
    args=TrainingArguments(
        learning_rate=2e-6,
        per_device_train_batch_size=1,
        per_device_eval_batch_size=1,
        gradient_accumulation_steps=1,
        lr_scheduler_type="cosine",
        num_train_epochs=1,
        logging_strategy="steps",
        save_strategy="steps",
        evaluation_strategy="steps",
        logging_steps=1,
        eval_steps=1,
        save_steps=1,
        warmup_steps=0,
        load_best_model_at_end=True,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        weight_decay=0.0,
        neftune_noise_alpha=5,
        remove_unused_columns=False,
    ),
    callbacks=[
        EarlyStoppingCallback(
            early_stopping_patience=3,
            early_stopping_threshold=0.005
        ),
    ],
)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 19.92
AI2 Reasoning Challenge (25-Shot) 22.70
HellaSwag (10-Shot) 25.60
MMLU (5-Shot) 23.24
TruthfulQA (0-shot) 0.00
Winogrande (5-shot) 47.99
GSM8k (5-shot) 0.00
Downloads last month
1,517
Safetensors
Model size
30.5M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Felladrin/Pythia-31M-Chat-v1

Finetuned
(140)
this model
Finetunes
7 models
Quantizations
4 models

Datasets used to train Felladrin/Pythia-31M-Chat-v1

Spaces using Felladrin/Pythia-31M-Chat-v1 2

Collection including Felladrin/Pythia-31M-Chat-v1

Evaluation results