combined_sft_10000_mcq
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the combined_10000_mcq dataset. It achieves the following results on the evaluation set:
- Loss: 0.0016
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 48
- total_eval_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0053 | 0.08 | 30 | 0.0054 |
0.0055 | 0.16 | 60 | 0.0052 |
0.005 | 0.24 | 90 | 0.0050 |
0.0049 | 0.32 | 120 | 0.0050 |
0.0052 | 0.4 | 150 | 0.0052 |
0.0045 | 0.48 | 180 | 0.0044 |
0.0036 | 0.56 | 210 | 0.0034 |
0.0032 | 0.64 | 240 | 0.0030 |
0.0033 | 0.72 | 270 | 0.0031 |
0.0031 | 0.8 | 300 | 0.0031 |
0.0029 | 0.88 | 330 | 0.0026 |
0.0029 | 0.96 | 360 | 0.0025 |
0.0023 | 1.04 | 390 | 0.0022 |
0.0021 | 1.12 | 420 | 0.0022 |
0.002 | 1.2 | 450 | 0.0020 |
0.0017 | 1.28 | 480 | 0.0020 |
0.0017 | 1.3600 | 510 | 0.0020 |
0.0016 | 1.44 | 540 | 0.0019 |
0.0017 | 1.52 | 570 | 0.0020 |
0.0017 | 1.6 | 600 | 0.0018 |
0.0017 | 1.6800 | 630 | 0.0018 |
0.0017 | 1.76 | 660 | 0.0017 |
0.0017 | 1.8400 | 690 | 0.0017 |
0.0016 | 1.92 | 720 | 0.0016 |
0.0017 | 2.0 | 750 | 0.0016 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for Howard881010/combined_sft_10000_mcq_2epoch
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407