RuT5TelegramHeadlines
Model description
Based on rut5-base model
Intended uses & limitations
How to use
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "IlyaGusev/rut5_base_headline_gen_telegram"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
article_text = "..."
input_ids = tokenizer(
[article_text],
max_length=600,
add_special_tokens=True,
padding="max_length",
truncation=True,
return_tensors="pt"
)["input_ids"]
output_ids = model.generate(
input_ids=input_ids
)[0]
headline = tokenizer.decode(output_ids, skip_special_tokens=True)
print(headline)
Training data
- Dataset: ru_all_split.tar.gz
Training procedure
- Training script: train.py
- Downloads last month
- 8,056
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.