RuT5TelegramHeadlines

Model description

Based on rut5-base model

Intended uses & limitations

How to use

from transformers import AutoTokenizer, T5ForConditionalGeneration

model_name = "IlyaGusev/rut5_base_headline_gen_telegram"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

article_text = "..."

input_ids = tokenizer(
    [article_text],
    max_length=600,
    add_special_tokens=True,
    padding="max_length",
    truncation=True,
    return_tensors="pt"
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids
)[0]

headline = tokenizer.decode(output_ids, skip_special_tokens=True)
print(headline)

Training data

Training procedure

Downloads last month
8,056
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using IlyaGusev/rut5_base_headline_gen_telegram 2