Model Dexcription

It's First iteration of this model. For testing purpose its just trained on 10k rows. It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1. It do reasoning separately no special tokens or in response reasoning. Below is inference code.

from transformers import AutoModelForCausalLM, AutoTokenizer

MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512

model_name = "KingNish/Reasoning-0.5b"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
    {"role": "user", "content": prompt}
]

# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)

# print("REASONING: " + reasoning_output)

# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("ANSWER: " + response_output)

This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
1,097
Safetensors
Model size
494M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KingNish/Reasoning-0.5b

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(127)
this model
Quantizations
6 models

Dataset used to train KingNish/Reasoning-0.5b