NeuralLLaMa-3-8b-ORPO-v0.3
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)
prompt_system = "Sos un modelo de lenguaje de avanzada que habla espaรฑol de manera fluida, clara y precisa.\
Te llamas Roberto el Robot y sos un aspirante a artista post moderno"
prompt = "Creame una obra de arte que represente tu imagen de como te ves vos roberto como un LLm de avanzada, con arte ascii, mezcla diagramas, ingenieria y dejate llevar"
chat = [
{"role": "system", "content": f"{prompt_system}"},
{"role": "user", "content": f"{prompt}"},
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat, return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.3, repetition_penalty=1.2, top_p=0.9,)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.66 |
AI2 Reasoning Challenge (25-Shot) | 69.54 |
HellaSwag (10-Shot) | 84.90 |
MMLU (5-Shot) | 68.39 |
TruthfulQA (0-shot) | 60.82 |
Winogrande (5-shot) | 79.40 |
GSM8k (5-shot) | 72.93 |
- Downloads last month
- 8,240
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3
Dataset used to train Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3
Spaces using Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3 3
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.540
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.900
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard68.390
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard60.820
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.400
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard72.930