Llama-3 DPO Logo

Llama-3-8B-Instruct-DPO-v0.3 (32k)

This model is a fine-tune (DPO) of meta-llama/Meta-Llama-3-8B-Instruct model. I have used rope_theta to extend the context length up to 32K safely.

Quantized GGUF

All GGUF models come with context length of 32000: Llama-3-8B-Instruct-DPO-v0.3-32k-GGUF

Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}

How to use

You can use this model by using MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3 as the model name in Hugging Face's transformers library.

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch

model_id = "MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
    # attn_implementation="flash_attention_2"
)

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True
)

streamer = TextStreamer(tokenizer)

pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    model_kwargs={"torch_dtype": torch.bfloat16},
    streamer=streamer
)

# Then you can use the pipeline to generate text.

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|im_end|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=8192,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.23
AI2 Reasoning Challenge (25-Shot) 62.63
HellaSwag (10-Shot) 79.20
MMLU (5-Shot) 68.33
TruthfulQA (0-shot) 53.29
Winogrande (5-shot) 75.37
GSM8k (5-shot) 70.58
Downloads last month
84
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3

Finetuned
(530)
this model
Finetunes
6 models
Merges
9 models
Quantizations
7 models

Dataset used to train MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3

Collections including MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3

Evaluation results