Calme-2 Models

MaziyarPanahi/calme-2.2-rys-78b

This model is a fine-tuned version of the dnhkng/RYS-XLarge, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.

Use Cases

This model is suitable for a wide range of applications, including but not limited to:

  • Advanced question-answering systems
  • Intelligent chatbots and virtual assistants
  • Content generation and summarization
  • Code generation and analysis
  • Complex problem-solving and decision support

⚑ Quantized GGUF

Coming soon!

πŸ† Open LLM Leaderboard Evaluation Results

Coming soon!

Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}

How to use


# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.2-rys-78b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.2-rys-78b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.2-rys-78b")

Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.

Downloads last month
16
Safetensors
Model size
78B params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for MaziyarPanahi/calme-2.2-rys-78b

Base model

dnhkng/RYS-XLarge
Finetuned
(4)
this model
Quantizations
2 models

Datasets used to train MaziyarPanahi/calme-2.2-rys-78b

Collection including MaziyarPanahi/calme-2.2-rys-78b