Model Card for pygemma:

pygemma is a language model that is trained to act as Python assistant. It is a finetuned version of google/gemma-2b that was trained using SFTTrainer on publicly available dataset iamtarun/python_code_instructions_18k_alpaca.

Training hyperparameters

The following hyperparameters were used during the training:

  • output_dir: peft-lora-pygemma

  • overwrite_output_dir: True

  • do_train: False

  • do_eval: False

  • do_predict: False

  • evaluation_strategy: no

  • prediction_loss_only: False

  • per_device_train_batch_size: 2

  • per_device_eval_batch_size: None

  • per_gpu_train_batch_size: None

  • per_gpu_eval_batch_size: None

  • gradient_accumulation_steps: 4

  • eval_accumulation_steps: None

  • eval_delay: 0

  • learning_rate: 2e-05

  • weight_decay: 0.0

  • adam_beta1: 0.9

  • adam_beta2: 0.999

  • adam_epsilon: 1e-08

  • max_grad_norm: 0.3

  • num_train_epochs: 3

  • max_steps: -1

  • lr_scheduler_type: cosine

  • lr_scheduler_kwargs: {}

  • warmup_ratio: 0.1

  • warmup_steps: 0

  • log_level: passive

  • log_level_replica: warning

  • log_on_each_node: True

  • logging_dir: peft-lora-pygemma/runs/Mar13_16-30-02_e65672b6422a

  • logging_strategy: steps

  • logging_first_step: False

  • logging_steps: 10

  • logging_nan_inf_filter: True

  • save_strategy: epoch

  • save_steps: 500

  • save_total_limit: None

  • save_safetensors: True

  • save_on_each_node: False

  • save_only_model: False

  • no_cuda: False

  • use_cpu: False

  • use_mps_device: False

  • seed: 42

  • data_seed: None

  • jit_mode_eval: False

  • use_ipex: False

  • bf16: True

  • fp16: False

  • fp16_opt_level: O1

  • half_precision_backend: auto

  • bf16_full_eval: False

  • fp16_full_eval: False

  • tf32: None

  • local_rank: 0

  • ddp_backend: None

  • tpu_num_cores: None

  • tpu_metrics_debug: False

  • debug: []

  • dataloader_drop_last: False

  • eval_steps: None

  • dataloader_num_workers: 0

  • dataloader_prefetch_factor: None

  • past_index: -1

  • run_name: peft-lora-pygemma

  • disable_tqdm: False

  • remove_unused_columns: True

  • label_names: None

  • load_best_model_at_end: False

  • metric_for_best_model: None

  • greater_is_better: None

  • ignore_data_skip: False

  • fsdp: []

  • fsdp_min_num_params: 0

  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

  • fsdp_transformer_layer_cls_to_wrap: None

  • accelerator_config: AcceleratorConfig(split_batches=False, dispatch_batches=None, even_batches=True, use_seedable_sampler=True)

  • deepspeed: None

  • label_smoothing_factor: 0.0

  • optim: adamw_torch_fused

  • optim_args: None

  • adafactor: False

  • group_by_length: False

  • length_column_name: length

  • report_to: ['tensorboard']

  • ddp_find_unused_parameters: None

  • ddp_bucket_cap_mb: None

  • ddp_broadcast_buffers: None

  • dataloader_pin_memory: True

  • dataloader_persistent_workers: False

  • skip_memory_metrics: True

  • use_legacy_prediction_loop: False

  • push_to_hub: False

  • resume_from_checkpoint: None

  • hub_model_id: None

  • hub_strategy: every_save

  • hub_token: None

  • hub_private_repo: False

  • hub_always_push: False

  • gradient_checkpointing: True

  • gradient_checkpointing_kwargs: {'use_reentrant': False}

  • include_inputs_for_metrics: False

  • fp16_backend: auto

  • push_to_hub_model_id: None

  • push_to_hub_organization: None

  • push_to_hub_token: None

  • mp_parameters:

  • auto_find_batch_size: False

  • full_determinism: False

  • torchdynamo: None

  • ray_scope: last

  • ddp_timeout: 1800

  • torch_compile: False

  • torch_compile_backend: None

  • torch_compile_mode: None

  • dispatch_batches: None

  • split_batches: None

  • include_tokens_per_second: False

  • include_num_input_tokens_seen: False

  • neftune_noise_alpha: None

  • distributed_state: Distributed environment: NO Num processes: 1 Process index: 0 Local process index: 0 Device: cuda

  • _n_gpu: 1

  • __cached__setup_devices: cuda:0

  • deepspeed_plugin: None

Downloads last month
9
Safetensors
Model size
2.51B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Menouar/pygemma

Base model

google/gemma-2b
Finetuned
(192)
this model

Dataset used to train Menouar/pygemma