Fine-tuned-Paligemma2-Graph-Analysis
This model is a fine-tuned version of google/paligemma2-3b-pt-224 on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for Mohit1Kulkarni/Fine-tuned-Paligemma2-Graph-Analysis
Base model
google/paligemma2-3b-pt-224