Phi-3-Instruct-Bloated
Phi-3-Instruct-Bloated is a merge of the following models using LazyMergekit:
𧩠Configuration
slices:
- sources:
- model: microsoft/Phi-3-mini-128k-instruct
layer_range: [0, 32]
- model: NexaAIDev/Octopus-v4
layer_range: [0, 32]
merge_method: slerp
base_model: microsoft/Phi-3-mini-128k-instruct
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
# Installation
!pip install -qU transformers accelerate
# Imports
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Loading
tokenizer = AutoTokenizer.from_pretrained("MrOvkill/Phi-3-Instruct-Bloated")
model = AutoModelForCausalLM.from_pretrained("MrOvkill/Phi-3-Instruct-Bloated")
# Completion function
def infer(prompt, **kwargs):
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, **kwargs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Some silliness
infer("<|user|>\nBen is going to the store for some Ice Cream. So is Jerry. They mix up the ice cream at the store. Is the ice cream: (a. Ben's (b. Jerry's (c. Ben and Jerry's <|end|>\n<|assistant|>\nMy answer is (", max_new_tokens=1024)
# A proper test
infer(
"""
<|user|>
Explain what a Mixture of Experts is in less than 100 words.
<|assistant|>
""",
max_new_tokens=1024,
do_sample=False,
temperature=0.0,
top_k=50,
top_p=0.89,
)
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.