Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3-8B

load_in_8bit: false
load_in_4bit: false
strict: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Kquant03/Sandevistan_Reformat
    type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
max_steps: 80000

fix_untrained_tokens: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: Pneuma
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

hub_model_id: Replete-AI/L3-Pneuma-8B
hub_strategy: every_save

warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"
tokens:

L3-Pneuma-8B

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the Sandevistan dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7381

Model description

This model is designed to challenge common paradigms in training Large Language Models, giving them a focus on user experience over profitability. These are highly experimental, and need preference training in order to increase their effectiveness.

Intended uses & limitations

Chatting, conversation, and assistance in small downstream tasks.

Large Language Models work incredibly differently from humans, so while we are capable of training and rewarding them to act just like us in many ways, you should treat it as a simulation and use the Socratic method when engaging with them. You, as an end-user should always remain in control of your own thoughts and decisions, and use AI as a way to improve yourself rather than becoming dependent on it.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 743

Training results

Training Loss Epoch Step Validation Loss
1.0378 0.0013 1 3.0437
0.6816 0.3334 248 2.7341
0.6543 0.6667 496 2.7381

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
70
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Replete-AI/L3-Pneuma-8B

Finetuned
(384)
this model
Merges
7 models
Quantizations
4 models