YAML Metadata Error: "pipeline_tag" must be a string

BERT base Japanese - JaQuAD

Description

A Japanese Question Answering model fine-tuned on JaQuAD. Please refer BERT base Japanese for details about the pre-training model. The codes for the fine-tuning are available at SkelterLabsInc/JaQuAD

Evaluation results

On the development set.

{"f1": 77.35, "exact_match": 61.01}

On the test set.

{"f1": 78.92, "exact_match": 63.38}

Usage

from transformers import AutoModelForQuestionAnswering, AutoTokenizer

question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?'
context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。'

model = AutoModelForQuestionAnswering.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')
tokenizer = AutoTokenizer.from_pretrained(
    'SkelterLabsInc/bert-base-japanese-jaquad')

inputs = tokenizer(
    question, context, add_special_tokens=True, return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0]
outputs = model(**inputs)
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits

# Get the most likely beginning of answer with the argmax of the score.
answer_start = torch.argmax(answer_start_scores)
# Get the most likely end of answer with the argmax of the score.
# 1 is added to `answer_end` because the index pointed by score is inclusive.
answer_end = torch.argmax(answer_end_scores) + 1

answer = tokenizer.convert_tokens_to_string(
    tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
# answer = 'スコットランド'

License

The fine-tuned model is licensed under the CC BY-SA 3.0 license.

Citation

@misc{so2022jaquad,
      title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}},
      author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho},
      year={2022},
      eprint={2202.01764},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
55
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train SkelterLabsInc/bert-base-japanese-jaquad